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Abstract

Truthtelling is often viewed as focal in the direct mechanisms associated with strategy-proof decision 
rules. Yet many direct mechanisms also admit Nash equilibria whose outcomes differ from the one under 
truthtelling. We study a model that has been widely discussed in the mechanism design literature (Sprumont, 
1991) and whose strategy-proof and efficient rules typically suffer from the aforementioned deficit. We 
show that when a rule in this class satisfies the mild additional requirement of replacement monotonicity, 
the set of Nash equilibrium allocations of its preference revelation game is a complete lattice with respect 
to the order of Pareto dominance. Furthermore, the supremum of the lattice is the one obtained under 
truthtelling. In other words, truthtelling Pareto dominates all other Nash equilibria. For the rich subclass of 
weighted uniform rules, the Nash equilibrium allocations are, in addition, strictly Pareto ranked. We discuss 
the tightness of the result and some possible extensions.
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1. Introduction

In the mechanism design literature, the single-peaked preference domain has played a central 
role. Most importantly, it paved a way out of the many impossibility results on the design of 
prior-free mechanisms. The celebrated Gibbard and Satterthwaite theorem (see Gibbard (1973)
and Satterthwaite (1975)) showed the impossibility of designing efficient and strategy-proof rules 
that would escape the dictatorship predicament under arbitrary preferences. In contrast, within 
the confine of the single-peaked domain, possibility results emerge. In a pathbreaking paper, 
Moulin (1980) characterizes the class of generalized median voting rules when the feasible set 
is made of all points on a line. On the private goods front, Sprumont (1991) studies the problem 
of allocating a divisible and nondisposable good.1 Sprumont (1991) characterizes a remarkable 
rule: the uniform rule which is uniquely characterized down by efficiency, strategy-proofness and 
a fairness requirement. The Sprumont model has received a great deal of attention in the mech-
anism design literature, from alternative characterizations of the uniform rule (see e.g. Ching 
(1994), Thomson (1994a,b, 1995, 1997)), to the exploration of different families of rules (Bar-
berà et al. (1997), Moulin (1999)), or the extensions of the model and the preference domain (see 
e.g. Adachi (2010), Bochet et al. (2013), Massó and Neme (2004) among others).2

In this paper, we show an unexpected property for a rich family of rules in the Sprumont 
model. We consider the largest class identified in the literature, the sequential allotment rules, 
characterized in Barberà et al. (1997) by the combination of efficiency, strategy-proofness and 
replacement monotonicity. Notice that each sequential allotment rule is fully implementable in 
dominant strategies by its direct revelation mechanism—this can be seen for instance following 
the results in Mizukami and Wakayama (2007). However, with the exception of dictatorship-type 
rules, the sequential allotment rules admit a plethora of Nash equilibria whose outcomes differ 
from the rule under truthtelling in their preference revelation games. Considering a rule as a direct 
revelation mechanism, our main result is as follows. We show that the set of Nash equilibrium 
allocations of any such rule is a complete lattice with respect to the order of Pareto dominance.3

Every complete lattice has a well-defined supremum and infimum. We show that the former is 
the allocation obtained under truthtelling, hence truthtelling Pareto dominates all the other Nash 
equilibrium outcomes. The infimum of the lattice may, on the other hand, be rule-specific. Nev-
ertheless, we show that for any sequential allotment rule for which the agents’ initial guaranteed 
levels are invariant to regime changes, the infimum of the lattice is the allocation formed by these 
initial guaranteed levels.4 For instance, in the case of the uniform rule the infimum of the lattice 
is the equal division allocation. Finally, for the special case of the weighted uniform rules (an 

1 In the sequel, we refer to this model as the Sprumont model.
2 It is not possible to pay a proper tribute to the vast literature on the Sprumont model. We refer the interested reader 

to Thomson (2014) for an extensive survey.
3 Our result establishes the complete lattice structure of the set of Nash equilibrium allocations with respect to the 

order of Pareto dominance. Henceforth, we simply refer to this as the lattice property, or lattice result, or lattice of the 
set of Nash equilibrium allocations. This should cause no confusion.

4 Notice that a salient feature of the model is the two different regimes generated by the sum of agents’ demands. 
Indeed (i) if the sum of demands exceeds what is available then we say that there is overdemand, (ii) if the sum of 
demands falls short of the resource we say that there is underdemand. A rule may treat different agents differently when 
there is either underdemand or overdemand.
www.manaraa.com
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extension of the uniform rule to a non-symmetric treatment of agents), we show that the Nash 
equilibrium allocations are in fact strictly Pareto ranked.5

In the remaining section of the paper, we check the tightness of our results and discuss some 
variations of the model (or the preference domain) where the lattice result may or may not hold. 
We first investigate the role that replacement monotonicity plays for our result with two exam-
ples. In Example 4.1 we construct a rule that violates replacement monotonicity and whose set of 
Nash equilibrium allocations is not a lattice with respect to the order of Pareto dominance. This 
hints that replacement monotonicity is essential for the result—and it certainly is in our proof. 
In addition, the rule considered there is efficient and group strategy-proof, demonstrating that 
our result cannot be proved if we just impose these two properties. Example 4.3 shows that re-
placement monotonicity is however not necessary for the lattice structure to hold. This suggests 
that replacement monotonicity can be replaced with weaker requirements in our main theorem. 
While this remains an open question at this stage, we show that for a rule that is efficient and 
strategy-proof, non-bossiness is a necessary (but not sufficient) condition for the lattice structure 
to hold.

Next, we look at (i) a different preference domain for which the lattice result may hold, and 
(ii) a possible variant of the model. On the former, Massó and Neme (2004) show that there are 
efficient and strategy-proof rules in the Sprumont model for the set of (partially) single-plateaued 
preferences. We show that the lattice result does not hold for the extended uniform rule charac-
terized on this domain. Regarding the latter, we consider the model of Moulin (1980). We show 
that for the target rules (Thomson, 1993)—the subclass of the generalized median rules that sat-
isfy replacement monotonicity (in welfare)—the set of Nash equilibrium public good levels are 
strictly Pareto ranked. On the other hand, for the well-known median rule, the lattice result does 
not hold.

The paper is organized as follows. In Section 2 we introduce the model and the necessary 
definitions. In Section 3, we present our main results. In Section 4, we discuss our results and 
some extensions to variants of the model. We offer some concluding remarks in Section 5.

2. Model and definitions

Let N = {1, 2, . . . , n} be the finite set of agents. There is a fixed amount of a divisible re-
source � > 0 to be allocated. An allotment for i ∈ N is denoted by xi ∈ [0, �]. An allocation
is a vector of allotments x = (x1, . . . , xn) ∈ [0, �]n such that 

∑
i∈N xi = �. Let X be the set 

of all possible allocations. Each agent i ∈ N has a preference relation Ri which is a transitive, 
complete, and continuous binary relation on [0, �]. We use the usual notations Pi and Ii to de-
note the asymmetric and symmetric parts of Ri , respectively. We restrict our attention to the set of 
single-peaked preferences, denoted by Ri . That is, there exists a “peak” function p :Ri → [0, �]
such that whenever a pair xi, x′

i ∈ [0, �] satisfies either x′
i < xi ≤ p(Ri) or p(Ri) ≤ xi < x′

i , it 
must be that xi Pi x′

i . A preference profile is a list R = (Ri)i∈N , and the set of single-peaked 
preference profiles is R ≡ ∏

i∈N Ri . For each R ∈ R, let p(R) ≡ (p(Ri))i∈N ∈ [0, �]N be its 
associated peak profile. For each R ∈ R, i ∈ N and S ⊂ N , we use the following standard nota-
tions: R−i ≡ (Rj )j∈N\{i}, RS ≡ (Ri)i∈S and R−S ≡ (Rj )j /∈S . We also use RS for 

∏
i∈S Ri .

5 In the Sprumont model, Sakai and Wakayama (2011) show that under a set of properties—notably, envy-freeness—
many rules can be lattice ordered via a relation of dominance with the uniform rule as its supremum. While the question 
studied in their paper is obviously different from ours, it is noteworthy to see the ranking of rules obtained there.
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2.1. Pareto comparison and lattice

For a given preference profile R ∈ R, we define a binary relation 	R on [0, �]n so that for 
any x, y ∈ [0, �]n, x 	R y if and only if xi Ri yi for each i ∈ N . Clearly, 	R is reflexive 
and transitive. Thus, 	R is a preorder on [0, �]n. On the other hand, 	R is not antisymmetric on 
[0, �]n, i.e., there could be some x, y ∈ [0, �]n such that x 
= y and x 	R y 	R x. Antisymmetric 
preorders are called partial orders. Thus, 	R is not a partial order on [0, �]n. We denote the 
asymmetric part of 	R by �R which is known as the Pareto dominance. Specifically, x �R y if 
and only if (i) x 	R y and (ii) there exists i ∈ N such that xi Pi yi .

Fix a subset Y ⊆ [0, �]n. We say that a pair (Y, 	R) is a partially ordered set if 	R is a partial 
order on Y . If 	R is complete and antisymmetric on Y , then (Y, 	R) is a totally ordered set. 
Let us pick a partially ordered set (Y, 	R) where Y ⊆ [0, �]n. For any subset Z ⊆ Y , y ∈ Y is 
an upper (lower) bound of Z if y 	R x (x 	R y) for all x ∈ Z. Furthermore, z ∈ Y is called the 
meet of Z if for all lower bound y of Z, z 	R y. We reserve the notation 

∧
Z for the meet of Z. 

On the other hand, z ∈ Y is the join of Z if for all upper bound y of Z, y 	R z. The join of Z is 
denoted by 

∨
Z.

Definition 2.1 (Lattice). A partially ordered set (Y, 	R) where Y ⊆ [0, �]n is a lattice if any set 
Z ⊂ Y with |Z| = 2 has both the meet and join in Y . Furthermore, a lattice (Y, 	R) is complete 
if every subset Z ⊆ Y has both 

∧
Z and 

∨
Z in Y .

It is well known that any complete lattice has both a well-defined supremum and infimum, 
denoted by xsup and xinf , such that for any x ∈ Y , 

∨{x, xsup} = xsup and 
∧{x, xinf} = xinf.

For any two elements x, y ∈ [0, �]n, we construct x ∧ y and x ∨ y in [0, �]N as follows: for 
each i ∈ N ,

[x ∧ y]i =
{

xi if yi Ri xi

yi otherwise,

and

[x ∨ y]i =
{

xi if xi Ri yi

yi otherwise.

Observe here that it is possible that x ∧ y 
= y ∧ x or x ∨ y 
= y ∨ x for some x, y ∈ [0, �]n.

2.2. Rules and their properties

A rule is a function f : R → X which maps each preference profile R ∈ R to an allocation 
f (R) ∈ X. For each R ∈ R and each i ∈ N , fi(R) stands for the resource allocated to agent i at 
preference profile R.

We now introduce three properties of rules frequently encountered in the literature. The first 
one is the well-known Pareto efficiency condition.

Pareto efficiency: Rule f satisfies efficiency if there exists no R ∈ R and x ∈ X such that 
x �R f (R).

It is well-known that in the single-peaked preference domain, efficiency of f is equivalent to 
the following condition:
www.manaraa.com
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Same-sidedness: Rule f satisfies same-sidedness if 
∑

i∈N p(Ri) ≥ � implies p(Ri) ≥ fi(R)

for each i ∈ N , and 
∑

i∈N p(Ri) ≤ � implies p(Ri) ≤ fi(R) for each i ∈ N .

The next property deals with the immunity to strategic manipulations, a requirement that is 
central in mechanism design. Strategy-proofness guarantees that agents will have no incentive to 
misreport their preferences.6 A rule is said to be manipulable if it violates strategy-proofness.

Strategy-proofness: Rule f satisfies strategy-proofness if for each R ∈R, each i ∈ N , and each 
R′

i ∈Ri , fi(R) Ri fi(R
′
i , R−i ).

The last property is replacement monotonicity studied in Barberà et al. (1997). It states that 
the allotment of a “deviator” and the other agents move in opposite directions. If agent i, the 
“deviator,” can walk away with a bigger (resp., smaller) share of the pie, then what is left for the 
remaining agents has shrunk (resp., increased) compared to the original allocation. Replacement 
monotonicity then requires that the remaining agents be all affected in the same direction by the 
change in the resources available to them.

Replacement monotonicity: Rule f satisfies replacement monotonicity if for each R ∈ R, each 
i ∈ N , and each R′

i ∈Ri , fi(R
′
i , R−i ) ≥ fi(R) implies that fj (R

′
i , R−i ) ≤ fj (R) for each j 
= i.

Notice that replacement monotonicity does not imply that f satisfies any form of symmetry 
among agents such as anonymity or equal treatment of equals, two properties that have played a 
central role in characterizations of the uniform rule.78

In this paper, we focus on the rules that simultaneously satisfy efficiency, strategy-proofness 
and replacement monotonicity. These are the so-called sequential allotment rules characterized 
in Barberà et al. (1997). These rules form a rich family with, at its core, the notion of reference 
shares (or initial guaranteed levels). Rules in this family allow for an iterative process that is 
flexible enough to accommodate changes of the reference shares through the iterative procedure. 
In short, sequential allotment rules allow for (i) any starting reference shares, (ii) different starting 
reference shares for the excess demand and supply cases, and (iii) at each step of the iteration, 
reference shares that depend on the size of the resource that is left.

Before giving a general definition for the family of sequential allotment rules, let us introduce 
some necessary definitions. First let xL, xH ∈ X be the (initial) minimum guaranteed levels of 
agents in the case of excess supply and excess demand, respectively. Fix a preference profile R ∈
R. Let us define a sequential adjustment function g : X × R → X ×R. We use the notation gt

to indicate the composition of g with itself t times, with the requirement that g0(x, R) = (x, R). 
We use the convention that if gt(x, R) = (x̂, R), for some x and R, then gt

1(x, R) ≡ x̂. Function 

6 If a rule is strategy-proof, then truthtelling is a (weakly) dominant strategy in the direct revelation mechanism asso-
ciated to rule f .

7 Note also that replacement monotonicity can be derived from other well-known properties. For instance, consistency 
and resource monotonicity, which play a prominent role in the literature, imply replacement monotonicity.

8 Our definition of replacement monotonicity is the one used in Barberà et al. (1997). It makes reference to monotonic-
ity in the variation of the allocation itself following a unilateral change in preferences by agent i. It is also possible to 
define a similar notion that makes reference to monotonicity in the variation of welfare following a unilateral change in 
preferences by agent i. Thomson (1997) defines this as (one-sided) welfare domination under preference replacement. 
We provide a discussion of the welfare version of replacement monotonicity in Section 4.2.
www.manaraa.com
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g is a sequential adjustment function with respect to the minimum guaranteed levels (xL, xH ) if 
the following items are satisfied for any (xt , R) such that (xt , R) = g(xt−1, R) = gt (x̄, R) where 
x̄ ∈ {xL, xH } for some 1 ≤ t ≤ n:

(i) xt
i = p(Ri) if (� − ∑

j∈N p(Rj ))(x
t−1
i − p(Ri)) ≤ 0.

(ii) (xt
i − xt−1

i )(� − ∑
j∈N p(Rj )) ≤ 0 if (� − ∑

j∈N p(Rj ))(x
t−1
i − p(Ri)) > 0.

(iii) If p(R̃i) ≥ p(Ri) > xt−1
i and 

∑
j∈N p(Rj ) ≥ �, or if p(R̃i) ≤ p(Ri) < xt−1

i and ∑
j∈N p(Rj ) < � then g(xt−1, R) = g(xt−1, (R̃i , R−i )).

(iv) Let R̃i and x̂n be such that (x̂n, (R̃i , R−i )) = gn(x̄, (R̃i , R−i )). Let (xn, R) = gn(x̄, R). 
Then

if p(R̃i) ≥ p(Ri) and
∑
j∈N

p(Rj ) ≥ �, then xn
k ≥ x̂n

k for k 
= i

if p(R̃i) ≤ p(Ri) and
∑
j∈N

p(Rj ) < �, then xn
k ≤ x̂n

k for k 
= i

How does one approach items (i) to (iv)? Consider for instance the over-demand case. Item (i) 
says that if at any stage of the iterative procedure, agent i’s peak is no higher than his guaranteed 
share, then agent i’s guaranteed level adjusts to his peak. Item (ii) says that for the agents j
whose peaks are above their guaranteed shares, the latter cannot adjust downward Item (iii) 
says that if agent i experiences a monotonic change in his peak, when going from Ri to R̃i , 
then the adjustment will remain unaffected Finally, item (iv) concludes by saying that if agent i
experiences a monotonic change in his peak, when going from Ri to R̃i , then the other agents 
j ’s actual guaranteed shares cannot decrease.

We are now ready to formally define the family of sequential allotment rules.

Sequential allotment rules: Rule f is a sequential allotment rule if there exist a pair of initial 
guaranteed levels (xL, xH ) ∈ X × X and a sequential adjustment function g : X ×R → X ×R
relative to xL and xH such that, for each R ∈R,

f (R) =
{

gn
1 (xH ,R) if

∑
j∈N p(Ri) ≥ �

gn
1 (xL,R) if

∑
j∈N p(Ri) < �

It is clear from the definition that the sequential allotment rules form a very rich class since 
(i) the initial guaranteed levels can differ across the two different regimes, (ii) the guaranteed 
levels evolve through the iterative allocation procedure implicit in the definition of the sequential 
allotment rules. For this reason, our main result may come as a surprise: having a common thread 
across the Nash equilibrium allocations for such a large family of rules is improbable. A detailed 
introduction to the family of sequential allotment rules can be found in the online supplement of 
this paper.9 We provide below the definitions of two specific sequential allotment rules that are 
used extensively in the paper.

Priority rule: Rule f is a priority rule if there exists a priority ordering � on N such that for each 
R ∈R and each i, j ∈ N with i � j , either [fi(R) = p(Ri)] or [fi(R) < p(Ri) and fj (R) = 0].

9 The online appendix can be found at https://sites .google .com /site /obochet2 /Onlineappendixlattice .pdf.
www.manaraa.com
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Weighted uniform rule: Rule f is a weighted uniform rule with respect to the vector ωL, ωH ∈
{δ ∈ Rn+ : δi > 0 ∀i ∈ N; ∑i∈N δi = 1} if for each R ∈ R and each i ∈ N ,

fi(R) =
{

min{p(Ri),ω
H
i λ} if

∑
i∈N p(Ri) ≥ �

max{p(Ri),ω
L
i λ} if

∑
i∈N p(Ri) < �

where λ solves 
∑

i∈N fi(R) = �.

An example of a weighted uniform rule is the uniform rule characterized by Sprumont (1991). 
The latter is obtained by setting ωH

i = ωL
i = 1

n
for each i ∈ N .

We now discuss some implications of efficiency, strategy-proofness and replacement mono-
tonicity that are used extensively in some of our proofs.

Non-bossiness: Rule f satisfies non-bossiness if for each R ∈R, each i ∈ N , and each R′
i ∈Ri , 

fi(R
′
i , R−i ) = fi(R) implies f (R′

i , R−i ) = f (R).

Observe that replacement monotonicity implies non-bossiness. Indeed, pick R ∈ R, i ∈ N

and R′
i ∈ Ri . If fi(R

′
i , R−i ) = fi(R), replacement monotonicity and feasibility together imply 

that fj (R
′
i , R−i ) = fj (R) for all j 
= i. Hence f (R′

i , R−i ) = f (R) and non-bossiness holds.

Peak-onliness: Rule f satisfies peak-onliness if for each R, R̃ ∈ R, p(Ri) = p(R̃i) for each 
i ∈ N implies that f (R) = f (R̃).

Observe that under strategy-proofness, efficiency and non-bossiness (implied by replace-
ment monotonicity), rule f automatically satisfies peak-onliness. To see this, pick R ∈ R, 
i ∈ N and R′

i ∈ Ri such that p(R′
i ) = p(Ri) = p̄. Suppose that fi(R

′
i , R−i ) 
= fi(R). The 

cases where either fi(R
′
i , R−i ), fi(R) < p̄ or p̄ < fi(R

′
i , R−i ), fi(R) lead to a contradic-

tion of strategy-proofness. Assume that fi(R
′
i , R−i ) ≤ p̄ < fi(R). Let R̃i ∈ Ri be such that 

p(R̃i) = p̄ and fi(R
′
i , R−i ) Ĩi fi(R). By strategy-proofness either fi(R̃i , R−i ) = fi(R

′
i , R−i ) or 

fi(R̃i , R−i ) = fi(R). In both cases, strategy-proofness is violated. Hence fi(R
′
i , R−i ) = fi(R). 

By non-bossiness f (R′
i , R−i ) = f (R) and hence peak-onliness holds.

2.3. Nash equilibria of direct revelation games

The direct revelation mechanism associated with a given rule f is denoted � = (R, f ). In 
such a mechanism, agents simply report a preference relation to the planner and rule f is used 
as outcome function. Given a preference profile R ∈R, (�, R) is a direct revelation game. Since 
all the rules studied in this paper satisfy peak-onliness, one could look at simpler direct reve-
lation mechanisms in which agents report their peaks. For convenience, we however stay with 
the standard definition. From now on, we refer to f both as a rule and as a direct revelation 
mechanism.

Nash equilibrium: Pick rule f . Profile R̃ ∈ R is a Nash equilibrium at profile R ∈R if for each 
i ∈ N , fi(R̃) Ri fi(R

′
i , R̃−i ) for each R′

i ∈Ri . For each R ∈R, let NE(f, R) be the set of Nash 
equilibria of the direct revelation mechanism associated to f .

Henceforth, since we fix rule f we will simply write NE(R) in place of NE(f, R). For each 
R ∈ R, let XNE(R) = {f (R̃) : R̃ ∈ NE(R)} ⊆ X be the set of Nash equilibrium allocations at 
www.manaraa.com
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profile R. We will pair the set of Nash equilibrium allocations at profile R with the preorder 	R

and study their properties. Our object of study is therefore (XNE(R), 	R) and our main result 
covers all the rules satisfying efficiency, strategy-proofness and replacement monotonicity.

3. Lattice structure of Nash equilibrium allocations

We first present an example which highlights some of the important features of our analysis. 
The example also provides some intuition for the general result that will follow.10

Example 3.1 (A sequential allotment rule: meet and join of Nash equilibrium allocations). Let 
n = 4, � = 10 and let rule f be determined as follows. The agents are divided into two groups 
with the first two agents in group 1 and the last two in group 2. The rule first determines each 
group’s allocation by initially guaranteeing 6 and 4 units to group 1 and 2 respectively (both for 
excess demand and supply). If both groups’ demand fall on the same side of their guaranteed 
levels, then each group gets its initial guaranteed level and the final within-group allocation 
is determined, for each group, according the uniform rule. On the other hand, if the groups’ 
demands fall on different sides of their guaranteed levels, whichever group demand is closest 
to its sum of peaks gets that amount while the other gets the remaining resource. For instance, 
if the sum of peaks is 7 for group 1 and 2 for group 2, then group 1 gets 7 while group 2 gets 
3.11 Once the allocation for the groups is determined, each group splits its allocation among its 
members according to the uniform rule. Let R ∈ R be such that p(R) = (5, 1, 0, 4). Consider 
reports R̄, R̃ ∈ R where p(R̄) = (4, 2, 2, 2) and p(R̃) = (3, 3, 1, 3). Note that R̄, R̃ ∈ NE(R). 
However, observe that f (R̄) = (4, 2, 2, 2) is not Pareto comparable to f (R̃) = (3, 3, 1, 3). At 
the same time, f (R̄) ∧ f (R̃) = (3, 3, 2, 2) and f (R̄) ∨ f (R̃) = (4, 2, 1, 3) are not only feasible 
allocations but they can also be supported as Nash equilibrium allocations. Specifically, a report 
R̂ ∈ R with p(R̂) = (3, 3, 2, 1) gives f (R̂) = (3, 3, 2, 2) and is a Nash equilibrium. Finally, 
R̆ ∈ R with p(R̆) = (4, 2, 1, 3) gives f (R̆) = (4, 2, 1, 3) and is also a Nash equilibrium. In fact, 
the meet and join of any two Nash equilibrium allocations are also Nash equilibrium allocations, 
i.e., the set of Nash equilibrium allocations is a lattice, ordered by the Pareto dominance relation 
�R . Importantly, if x ∈ XNE(R) then any report profile R̃ ∈ R whose peak p(R̃) is x is itself a 
Nash equilibrium. �

Before going to our main findings, we start with a result that is of independent interest: fol-
lowing the conclusion of Example 3.1, we show that any Nash equilibrium allocation x can be 
obtained with an alternative Nash equilibrium preference report with peaks at xi for each i ∈ N .

Proposition 3.2. Let rule f satisfy efficiency, strategy-proofness and replacement monotonicity. 
Let x ∈ XNE(R) for some R ∈ R. Then any R̂ ∈ R with p(R̂) = x is a Nash equilibrium at 
profile R.

Proof. See Appendix. �
10 The interested reader can find a more detailed description of the rule presented in Example 3.1, in the online appendix 
of the paper. See Example 1.4 on page 4.
11 Notice that failing to sequentially adjust the groups guaranteed levels in this way would imply a violation of efficiency. 
For instance if the peaks of group 1 are (5,5), while the peaks of group 2 are (0,0), one cannot just apply the uniform rule 
within the groups right away. Indeed the resulting final allocation would be (3,3,2,2,), and this allocation is not efficient.
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Let us provide a brief sketch of the proof. Suppose R̄ ∈ NE(R) is a preference profile leading 
to x, i.e., f (R̄) = x. If 

∑
i p(R̄i) = � then efficiency and peak-onliness give the desired result. 

Assume without loss of generality that 
∑

i p(R̄i) > �. Consider R̂ such that p(R̂) = f (R̄). By 
efficiency (and since 

∑
i fi(R̄) = ∑

i p(R̂i)), we have that f (R̂) = p(R̂) = f (R̄). We next show 
that f (Ri, R̄−i ) = f (R̄). Because R̄ ∈ NE(R) and f is strategy-proof, f (Ri, R̄−i ) Ii f (R̄) for 
all i ∈ N . If fi(R̄) ≤ p(Ri) then single-peakedness, strategy-proofness and peak-onliness give 
that fi(R̄) = f (Ri, R̄−i ). On the other hand, if p(Ri) < fi(R̄) then, by efficiency, agent i should 
be able to decrease her allocation from fi(R̄), unless every j 
= i has a peak at fj (R̄). Of course, 
agent i being able to decrease her allocation contradicts that f is strategy-proof. Thus, in both 
cases we have fi(Ri, R̄−i ) = fi(R̄) which, along with non-bossiness, gives f (Ri, R̄−i ) = f (R̄). 
We then show that agent i has no profitable deviation from R̂. Suppose some j 
= i switches 
her report from R̄j to R̂j . Because p(R̂j ) = fj (R̄) = fj (Ri, R̄−i ) strategy-proofness gives that 
fj (Ri, R̂j , R̄−ij ) = fj (Ri, R̄−i ) = fj (R̄). Again non-bossiness gives that f (Ri, R̂j , R̄−ij ) =
f (R̄). Using the same argument sequentially for each agent j 
= i, we obtain that f (Ri, R̂−i ) =
f (R̄). Since f (R̂) = f (R̄) and f is strategy-proof, agent i has no profitable deviation from R̂. 
Since agent i is selected arbitrarily, R̂ must be a Nash equilibrium.

We are now ready to state our main result showing that (i) the set of Nash equilibrium alloca-
tions is a complete lattice with respect to the order of Pareto dominance, and (ii) the supremum 
of the lattice is the allocation obtained under truthtelling. Following this, we will provide some 
additional results: we identify the infimum of the lattice in some special cases, and we show a 
much stronger result for the class of weighted uniform rules.

Theorem 3.3. Let rule f satisfy efficiency, strategy-proofness and replacement monotonicity. For 
each R ∈ R, (XNE(R), 	R) is a complete lattice whose supremum element is f (R).

Proof. See Appendix. �
Observe that Theorem 3.3 identifies the allocation obtained under truthtelling as the supre-

mum of the lattice but it is silent on the infimum. Identifying the latter typically depends on 
specifics of the rule under consideration. Indeed, the initial guaranteed levels xL and xH play an 
important role in determining the infimum of the lattice of the Nash equilibrium allocations. For 
instance Example 1.2 in the online appendix depicts the structure of the set of Nash equilibrium 
allocations for the uniform rule and shows how the equal division allocation is a Nash equilibrium 
and is always Pareto dominated by all other Nash equilibrium allocations. The characterization 
in Example 1.2 hinges upon the equality between initial guaranteed levels: when xL = xH , the 
infimum of the lattice is always the allocation formed by the initial guaranteed levels.

Proposition 3.4. Let f be a sequential allotment rule with xL = xH = x∗. For each R ∈ R, 
x∗ ∈ XNE(R). Moreover, for each x ∈ XNE(R) with x 
= x∗, x Pareto dominates x∗ i.e. x �R x∗.

Proof. See Appendix �
When considering a set of rules for which xL 
= xH , the infimum of the lattice formed by the 

set of Nash equilibrium allocations will be specific to each of the rules f considered. Indeed, re-
call that the sequential allotment rules allow to have (i) any initial guaranteed levels, (ii) different 
guaranteed levels for the excess demand and supply cases, and (iii) at each step of the iteration, 
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guaranteed levels that depend on the size of the resource that is left. Note that (iii) implies that 
the way the initial guaranteed levels evolve may also be rule specific. For instance, for a given 
f , xH changes as a function of the remaining resource left after some agents are served. Also 
xH and xL may actually evolve differently as a function of the resources left once some agents 
have left the problem. As such, different preference profiles may lead to a different evolution of 
initial guaranteed levels. In the simpler case where the evolution of initial guaranteed levels is 
uniform, i.e. the case of the asymmetric weighted uniform rules described in the appendix, the 
initial guaranteed levels may not even be in the set of Nash equilibrium allocations for some 
preference profiles, as the following example shows.

Example 3.5 (Different initial guaranteed levels). Let n = 3, � = 6, and R ∈ R be such that 
p(R) = (1, 2, 4). Let xH = (3, 1.5, 1.5), xL = (2.9, 1.6, 1.5), and let f be the weighted uniform 
rule associated with xL and xH .

Case 1: Consider R̃ with � ≤ ∑
i∈N p(R̃i) and assume that R̃ ∈ NE(R) with f (R̃) =

(3, 1.5, 1.5) = xH . By Proposition 3.2, R̂ with p(R̂) = xH is a Nash equilibrium at R. No-
tice that at the report (R1, R̂−1), f1(R1, R̂−1) < 3. Indeed, following the deviation, the initial 
guaranteed levels that are considered are xL since p(R1) + ∑

i 
=1 p(R̂i) < �. Agent 1 strictly 

benefits from such a deviation, a contradiction with R̂ ∈ NE(R).

Case 2: Consider R̃ with 
∑

i∈N p(R̃i) < � and assume that R̃ ∈ NE(R) with f (R̃) =
(2.9, 1.6, 1.5) = xL. By Proposition 3.2, R̂ with p(R̂) = xL is a Nash equilibrium at R. No-
tice that at the report (R3, R̂−3), f3(R3, R̂−3) > 1.5. Indeed, following the deviation, the initial 
guaranteed levels that are considered are xH since p(R3) + ∑

i 
=3 p(R̂i) > �. Agent 3 strictly 

benefits from such a deviation, a contradiction with R̂ ∈ NE(R). �

Example 3.5 shows that whenever xL 
= xH , the initial guaranteed levels may no longer be part 
of the set of Nash equilibrium allocations for some preference profile R.12 A full characterization 
of the lower bound of the lattice seems therefore out of reach.

We conclude with a result regarding the subclass of weighted uniform rules: the lattice formed 
by the Nash equilibrium allocations is in fact ranked, i.e. there are no Nash equilibrium alloca-
tions that end up not being Pareto comparable.

Proposition 3.6. Let f be a weighted uniform rule. Then (XNE(R), 	R) is a totally ordered set, 
i.e. the Nash equilibrium allocations are all Pareto comparable.

Proof. See Appendix. �
We now make a couple of observations. One may wonder if the set of peaks corresponding 

to Nash equilibria is a complete lattice, or if the set of Nash equilibrium allocations satisfies 
convexity. The answers to these questions turn out to be both negative as shown below.

12 Of course the initial guaranteed levels may still be Nash equilibrium allocations. For instance pick p(R) = (1, 1.4, 4)

and let xH = (3, 1.6, 1.4), xL = (3, 1.4, 1.6). Then R̃ such that p̃ = (3, 1.4, 1.6) gives f (p̃) = (3, 1.4, 1.6) = xL . One 
can check that R̃ ∈ NE(R). Note that xH cannot be supported as a Nash equilibrium allocation at profile R.
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Example 3.7 (The set of peaks of Nash equilibria is not a lattice). Let n = 3, � = 6 and let f
be the uniform rule. Pick R ∈ R such that p(R) = (2, 2, 2). Consider in addition two additional 
profiles R̄, R̃ ∈ R with p(R̄) = (2, 2, 3) and p(R̃) = (1, 2, 2). Observe that f (R̄) = f (R̃) =
(2, 2, 2). Thus, R̄, R̃ ∈ NE(R). However, f (R̃1, R̄−1) = (1, 2, 3). Clearly, both agents 1 and 3 
have some profitable unilateral deviations from (R̃1, R̄−1). Thus, (R̃1, R̄−1) /∈ NE(R). �

Example 3.8 (Non-convexity of the set of Nash equilibrium allocations). Let n = 4, � = 8 and 
let f be the uniform rule. Pick R ∈ R such that p(R) = (0, 1, 3, 4). Regardless of the choice of 
the sequential allotment rule f , we know that f (R) = (0, 1, 3, 4) and R ∈ NE(R). Let R̄ ∈ R
be such that p(R̄) = (2, 2, 2, 2). Then f (R̄) = (2, 2, 2, 2) and R̄ ∈ NE(R). However, the linear 
combination of these two allocations with equal weights is not a Nash equilibrium allocation. 
Indeed, allocation (1, 1.5, 2.5, 3) occurs only if the agents report R̃ with p(R̃) = (1, 1.5, 2.5, 3). 
However, by reverting to truthtelling agent 3 would get 2.75 which is strictly preferred to getting 
2.5. �

4. Discussion: robustness checks and extensions

4.1. On the role of replacement monotonicity

We discuss the role that replacement monotonicity plays in Theorems A.7 and 3.3.13 We 
investigate this issue by means of two examples.

Example 4.1 (Replacement monotonicity is key). Let n = 3, � = 6, and let f be described as 
follows. For any profile R ∈ R, if p(R1), p(R2) < �

n
, then f is a priority rule with respect to 

ordering 1 � 2 � 3. However, if at least one of the first two agents has preferences with peak at 2 
or above, then f is the uniform rule.

Rule f is efficient and non-bossy: Rule f is either a priority rule or the uniform rule depending 
on the first two agents’ peaks. Both rules are efficient implying that so is f .

Since � = 6, observe that whenever both agents 1 and 2 report their peaks strictly below 2, 
each obtains his reported peak. However, whenever one of them reports a peak at 2 or above, she 
obtains at least 2 units of resource. Thus, no agent can force f to switch from or to the priority 
rule without changing her own allocation. In addition, both the priority rule and the uniform rule 
satisfy non-bossiness, thus f also satisfies non-bossiness.

Rule f is strategy-proof: For agent 3 this is obvious because his reported preferences alone 
cannot force f to switch to or from the priority rule (the same goes for the uniform rule). Given 
that both rules are strategy-proof, truthtelling is a dominant strategy for agent 3. Next, pick any 
R ∈R and consider agent 1.

Case 1: Suppose p(R2) ≥ 2. Then f is the uniform rule regardless of agent 1’s report. Given 
that the uniform rule is strategy-proof, truthtelling is a dominant strategy.

13 In the appendix, the proof of Theorem 3.3 is split into two parts. In the first part, which we label Theorem A.7, we 
show that (XNE(R), 	R) is a lattice. In the second part, which we label Theorem 3.3, we establish the completeness of 
the lattice and the truthtelling allocation as the supremum of the lattice.
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Case 2: Suppose p(R2) < 2. If p(R1) < 2, then agent 1 has no incentive to misreport her pref-
erences because f1(R) = p(R1). If p(R1) ≥ 2, then f (R) is the uniform allocation at profile 
R. For any of her report R̃1 with p(R̃1) ≥ 2, f (R̃1, R−1) is also the uniform allocation, and the 
uniform rule is strategy-proof. Thus, R̃1 with p(R̃1) ≥ 2 cannot be a profitable deviation. Finally, 
consider R̃1 with p(R̃1) < 2. Now f is a priority rule. Thus, f1(R̃1, R−1) = p(R̃1) < 2 ≤ p(R1). 
By reporting her peak truthfully, agent 1 is allocated at least 2 units but never more than p(R1). 
Thus, agent 1 has no incentive to lie. By the same reasoning, agent 2 has no incentive to lie either.

Rule f does not satisfy replacement monotonicity: Let R ∈ R such that p(R) = (1, 2, 2). 
Because p(R2) ≥ 2, f allocates according to the uniform rule. Thus, f (R) = (2, 2, 2). However, 
if agent 2 deviates to R̃2 with p(R̃2) = 1 then f (R̃2, R−2) = (1, 1, 4) since f follows the priority 
rule. Following the change in the report of agent 2, it is clear that the allotments of agents 1 and 
3 move in different directions.

Truthtelling does not Pareto dominate all the Nash equilibrium allocations: Consider a pro-
file R ∈ R such that p(R) = (1, 1, 2). In this case, f (R) = (1, 1, 4). Consider R̃ ∈ R such that 
p(R̃) = (2, 2, 2). It is easy to see that f (R̃) = (2, 2, 2) and R̃ ∈ NE(R). Clearly, the allocation 
under truthtelling does not Pareto dominate f (R̃).

The set of Nash equilibrium allocations is not a lattice ordered by the Pareto relation: For 
this, notice that f (R̃) ∨ f (R) = (1, 1, 2) and f (R̃) ∧ f (R) = (2, 2, 4) are not even feasible 
allocations, so replacement monotonicity seems essential to guarantee the feasibility of the meet 
and join of Nash equilibrium allocations. �

Remark 4.2. There are two important conclusions to draw from Example 4.1. The first one is 
that replacement monotonicity cannot be replaced by non-bossiness in the statement of Theo-
rem 3.3. Next, Bochet and Tumennasan (2017) show that, under efficiency, the combination of 
non-bossiness and strategy-proofness is equivalent to group strategy-proofness.14,15 Thus, the 
rule described in Example 4.1 is group strategy-proof —one can easily prove this directly. An 
important conclusion follows: efficiency and group strategy-proofness together do not necessar-
ily lead to the lattice structure of the set of Nash equilibrium allocations.16

14 Rule f satisfies group strategy-proofness if for each R ∈ R there does not exist S ⊆ N and R̃S such that 
fi(R̃S , R−S) Ri fi(R) for all i ∈ S, and with fj (R̃S , R−S) Pj fj (R) for at one least j ∈ S.
15 Bochet and Tumennasan (2017) study a new property called group resilience. They show that (i) group resilience 
is equivalent to strategy-proofness and non-bossiness in welfare, (ii) in our setting, under the requirement of efficiency, 
group-resilience is equivalent to group strategy-proofness, and (iii) non-bossiness and strategy-proofness together imply 
non-bossiness in welfare. By combining (i), (ii) and (iii), Bochet and Tumennasan (2017) obtain that non-bossiness and 
strategy-proofness together is equivalent to group strategy-proofness. We refer the reader to Bochet and Tumennasan 
(2017) for more details.
16 Barberà et al. (2016) show that under some richness of the preference domain, if a rule satisfies some mono-
tonicity condition and a weakening of non-bossiness in welfare, then strategy-proofness is equivalent to (weak) group 
strategy-proofness. The single-peaked domain is rich and the sequential allotment rules satisfy the joint monotonic-
ity and respectfulness requirements identified in their paper. Strategy-proofness could therefore be replaced by (weak) 
group strategy-proofness in the statement of Theorem 3.3. Example 4.1 however shows that one cannot prove the The-
orem using only efficiency and (weak) group strategy-proofness. Indeed a strengthening of non-bossiness is needed, in 
addition to the former two conditions.
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One may now wonder if replacement monotonicity is necessary for the lattice result to hold for 
any efficient and strategy-proof rule. Our second example shows that the answer to this question 
is negative.

Example 4.3 (A mixture of a group strategy-proof priority and uniform rule that violates re-
placement monotonicity but preserve the lattice structure). Consider the following rule f . For 
any R ∈ R, agent 1 always gets his peak p(R1). If p(R1) ≤ 2 then the remaining agents split 
� −p(R1) according to the uniform rule. If p(R1) > 2, then the remaining agents split � −p(R1)

using the fixed priority ordering � over the set of agents N \ {1}. It is clear that f does not satisfy 
replacement monotonicity since an increase in the peak of agent 1 may generate a non-monotonic 
change in the allocation of agents other than her. It is also obvious that f satisfies group strategy-
proofness. Finally, given what we already know about the uniform rule, it is clear that the set 
of Nash equilibrium is a lattice and truthtelling Pareto dominates all other Nash equilibrium 
allocations. �

Under efficiency and strategy-proofness, Example 4.3 shows that replacement monotonicity 
is not necessary for the lattice result. Ideally, one would want to pin down a condition that is both 
necessary and sufficient. Unfortunately this remains an open question at this stage. We however 
demonstrate below that for any efficient and strategy-proof rule, non-bossiness is a necessary 
condition for the lattice result to hold. In conclusion, a necessary and sufficient condition lies 
between replacement monotonicity and non-bossiness. Recall that the rule constructed in Ex-
ample 4.1 satisfies non-bossiness yet its set of Nash equilibrium allocations is not a lattice. If 
replacement monotonicity is to be replaced with another condition in Theorem 3.3, it should 
therefore be a more demanding requirement than non-bossiness.

Proposition 4.4. Let rule f satisfy efficiency and strategy-proofness. Assume that for each 
R ∈ R, (XNE(R), 	R) is a complete lattice whose supremum element is f (R). Then f satis-
fies non-bossiness.

Proof. See Appendix. �
4.2. Alternative characterizations of Theorem 3.3

In this subsection, we discuss if some of the requirements of Theorem 3.3 can be replaced 
with other well-known properties. As we already pointed out in Section 2, it is well-known that 
efficiency is equivalent to the same-sidedness condition in the Sprumont model. Hence, we obtain 
the following corollary which turns out to be useful when we investigate the multi-commodity 
setting.

Corollary 4.5. Let rule f satisfy same-sidedness, strategy-proofness and replacement mono-
tonicity. For each R ∈R, (XNE(R), 	R) is a complete lattice whose supremum element is f (R).

We now discuss some variants of replacement monotonicity. Indeed, replacement monotonic-
ity can be written in different ways, depending whether one is interested in a property about 
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variations in physical terms or in welfare (see Thomson (2016) for a detailed discussion). For the 
latter, one possible variant is the following.17

Replacement monotonicity in welfare: Rule f satisfies replacement monotonicity in welfare if 
for each R ∈ R, each i ∈ N , and each R′

i ∈ Ri , either fj (R
′
i , R−i ) Rj fj (R) for each j 
= i, or 

fj (R) Rj fj (R
′
i , R−i ) for each j 
= i.

It turns out that replacement monotonicity in welfare is very demanding —see Thomson 
(1997) for a detailed discussion of the implication of replacement monotonicity in welfare and 
its one-sided variant.18 For instance, the uniform rule does not satisfy this property.

Example 4.6 (Violation of replacement monotonicity in welfare). Let n = 3, � = 12, and let f
be the uniform rule. Consider R with p(R) = (0, 0, 8) and R̃1 with p(R̃1) = 8. Then f (R) =
(2, 2, 8) and f (R̃1, R−1) = (6, 0, 6). Clearly, f (R) P3 f (R̃1, R−1) but f (R̃1, R−1) P2 f (R). �

The violation of replacement monotonicity in welfare is due to the regime change when going 
from profile R to (R̃1, R−1). The violation disappears if replacement monotonicity in welfare is 
one-sided, i.e. if it is required only for preferences changes that are not “too disruptive”, i.e. the 
ones that do not trigger a change of regime—see Thomson (1997). Observe also that, locally, the 
uniform rule satisfies replacement monotonicity in welfare. We introduce the following property 
as a possible alternative to the one-sided formulation of replacement monotonicity in welfare. 
Under efficiency, both properties are equivalent to replacement monotonicity.

Local replacement monotonicity in welfare: Rule f satisfies local replacement monotonicity 
in welfare if for each R ∈ R, there exists δ > 0 such that for each i ∈ N and each R′

i ∈ Ri

such that |p(R′
i ) − p(Ri)| < δ, then either (i) fj (R

′
i , R−i ) Rj f (R) for each j ∈ N \ i, or (ii) 

fj (R) Rj fj (R
′
i , R−i ) for each j ∈ N \ i.

We can therefore re-write Theorem 3.3 as follows.

Theorem 4.7. Let rule f satisfy efficiency, strategy-proofness and local replacement monotonic-
ity in welfare. For each R ∈ R, (XNE(R), 	R) is a complete lattice whose supremum element is 
f (R).

4.3. Larger preference domains

One may wonder if the lattice structure of the Nash equilibrium allocations holds on a larger 
preference domains. This is a natural question since Massó and Neme (2004) show that there 
remain efficient and strategy-proof rules in the Sprumont model once the preference domain is 
extended to the (partially) single-plateaued preferences. We show that for the extended uniform 
rule characterized on this domain by Massó and Neme (2004), the lattice result is lost.

In order to make the discussion complete, let us define the single-plateaued domain. For each 
i ∈ N and each Ri ∈ Ri , the plateau is an interval p(Ri) = [p(Ri), p̄(Ri)] ⊆ [0, �]. Agent 

17 We thank an anonymous referee for suggesting us to look at the welfare formulation of replacement monotonicity.
18 Replacement monotonicity in welfare is discussed in Thomson (1997) under the moniker welfare domination under 
preference replacement. The mere difference in labeling should cause no confusion.
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i ∈ N is indifferent between the allotments in p(Ri). On the other hand, if xi < p(Ri) and 
xi < yi ≤ p̄(Ri) or if p̄(Ri) < xi and p(Ri) ≤ yi < xi then yi Pi xi .

Extended uniform rule: Rule f is the extended uniform rule if for each R ∈R and each i ∈ N ,

fi(R) =

⎧⎪⎨
⎪⎩

max{p̄(Ri), λ} if
∑

i∈N p̄(Ri) < �

min{p̄(Ri),p(Ri) + λ} if
∑

i∈N p(Ri) < � ≤ ∑
i∈N p̄(Ri)

min{p(Ri), λ} if � ≤ ∑
i∈N p(Ri)

where λ solves 
∑

i∈N fi(R) = �.

We show that the set of Nash equilibrium allocations of the extended uniform rule is not a 
lattice.

Example 4.8 (The lattice structure does not extend to a larger preference domain). Let n = 2, 
� = 10 and let f be the extended uniform rule. Let R ∈ R be such that p(R1) = [3, 4] and 
p(R2) = [6, 7]. Let f be the extended uniform rule. The set of Nash equilibrium allocations is 
given by XNE(R) = {x ∈ X : 3 ≤ x1 ≤ 5}. Observe that (XNE(R), 	R) is not a lattice. In fact, 
it is not even a partially ordered set because 	R is not antisymmetric on XNE(R). For instance, 
(3, 7) 	R (4, 6) 	R (3, 7). However, we note that truthtelling which results in the allocation 
(3.5, 6.5) is not Pareto dominated by any other Nash equilibrium allocation. �

4.4. Public good economies with single-peaked preferences

The interest in the study of strategy-proof rules when preferences are single-peaked notably 
picks up with Moulin (1980)’s seminal contribution. Moulin (1980) characterizes the class of 
generalized median voting rules on the basis of efficiency and strategy-proofness—see also Bar-
berà and Jackson (1994). Thomson (1993) shows that, out of these rules, the only ones satisfying 
replacement monotonicity (in welfare) are the so-called Target rules which we define below. For 
simplicity let [0, �] be the set of possible public good levels. Preferences remain single-peaked 
on this interval. For any profile R ∈R, let minp(R) = {x ∈ [0, �] : �i ∈ N with p(Ri) < x} and 
maxp(R) = {x ∈ [0, �] : �i ∈ N with p(Ri) > x}. It is easy to see that rule f is efficient if for 
each R ∈ R, f (R) ∈ [minp(R), maxp(R)].

Target rules: Rule f a is a target rule with respect to a ∈ [0, �] if for each R ∈ R, either (i) 
f a(R) = a if minp(R) ≤ a ≤ maxp(R), or (ii) f a(R) = minp(R) if a < minp(R), or (iii) 
f a(R) = maxp(R) if a > maxp(R).

In the family of target rules, each rule is indexed by a level a ∈ [0, �]. We characterize below 
the structure of the set of Nash equilibrium public good levels for any given target rule. Fix 
a ∈ [0, �] and consider rule f a .

Case 1: For R ∈R, f a(R) = a. Then a is the unique Nash equilibrium outcome. Indeed, notice 
that for a not be selected it must be that agents report R̃ ∈ R such that either maxp(R̃) < a or 
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minp(R̃) > a. But then R̃ cannot be a Nash equilibrium outcome since any agent can enforce a
to be the level of public good selected.19

Case 2: For R ∈R, f a(R) 
= a. Suppose that f a(R) > a, where, by definition of the target rule, 
for each i ∈ N we have p(Ri) ≥ f a(R). Then any R̃ ∈ R such that (i) f a(R̃) ∈ [a, f a(R)) and 
(ii) there does not exist i ∈ N , R̂i ∈ Ri such that f a(R̂i , R̃−i ) > f a(R̃), is a Nash equilibrium 
outcome. In particular any report R̃ ∈R such that for each i, j ∈ N , p(R̃i) = p(R̃j ) ∈ [a, f a(R)]
is a Nash equilibrium. The second case where f a(R) < a is analogous.

Therefore the set of Nash equilibrium public good levels is either a singleton (the target a), 
or it is an interval. For the latter, it is either the interval [f a(R), a] or [a, f a(R)]. Observe that 
these Nash equilibrium levels are strictly Pareto ranked. To see this, consider Case 2 and suppose 
that f a(R) > a. Then the set of Nash equilibrium levels [a, f a(R)] is a complete lattice with 
infimum a and supremum f a(R). For any x, x′ ∈ [a, f a(R)], x and x ′ are strictly Pareto ranked. 
Notice that any Nash equilibrium public good level x can be supported with a preference report 
whose unanimous peaks are x. This observation can be seen as an analog of Proposition 3.2 that 
we discussed earlier. We now have the following immediate result.

Theorem 4.9. Let rule f satisfy efficiency, strategy-proofness and replacement monotonicity in 
welfare, i.e. f ≡ f a for some a ∈ [0, �]. For each R ∈ R, (XNE(R), 	R) is a totally ordered set 
with supremum element f a(R), and infimum element a. In addition, for each R ∈ R and each 
x ∈ XNE(R), any R̃ ∈ R with p(R̃) = (x, ..., x) is a Nash equilibrium.

The set of generalized median voting rules contain many rules that violate replacement mono-
tonicity in welfare. An example of such a rule is the median rule itself.20,21 One may wonder 
whether such rules inherit the lattice structure of the set of Nash equilibrium allocations. The 
answer turns out to be negative as shown in the following example.

Example 4.10 (Replacement monotonicity in welfare is essential for the lattice structure to hold). 
Let n = 3 and f be the median rule. Consider R ∈ R with 0 < p(R1) < p(R2) < p(R3) < �

and such that there exists x ∈ (0, p(R1)) with x I1 p(R2). By definition of the median, f (R) =
p(R2). Consider the report R̃ with x < p(R̃i) = p(R̃j ) < p(R2) for each i, j ∈ N . Then f (R̃) =
p(R̃i). Notice that R̃ is a Nash equilibrium as no unilateral deviation can alter the median. Notice 
also that f (R) Pj f (R̃) for j = 2, 3 while f (R̃) P1 f (R). Hence f (R) and f (R̃) are two Nash 
equilibrium public good levels that are not Pareto comparable, and their meet and join are then 
obviously not well-defined. We conclude that the set of Nash equilibrium levels is not a complete 
lattice. Moreover the truthtelling public good level does not Pareto dominate all the other Nash 
equilibrium levels. �

19 If maxp(R̃) < a, then any i ∈ N can report R̂i > a for a to be efficient at (R̂i , R̃−i ). By assumption, we know that 
there exists an agent who would benefit by deviating and enforcing a as outcome at profile R. The reasoning is analogous 
if minp(R̃) > a.
20 Formally, the median rule is defined as the rule which, for each R ∈ R, selects the median of the peaks and (n − 1)

phantoms where (i) (n−1)
2 phantoms are positioned both at 0 and at � if n is odd, (ii) (n−2)

2 phantoms are positioned 
both at 0 and at �, while the remaining phantom is arbitrarily fixed at either 0 or � depending on the way ties are to be 
broken.
21 It is easy to see that the median rule violates replacement monotonicity in welfare. Let n = 3 and pick R ∈ R
with p(R1) < p(R2) < p(R3). Then f (R) = p(R2). Consider (R̃2, R−2) with p(R2) < p(R̃2) < p(R3). Then 
f (R̃2, R−2) = p(R̃2), and agent 3 is better-off while agent 1 is worse-off.
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5. Conclusion

In this paper, we have established not only some surprising properties of truthtelling in the 
Sprumont model, but also an unexpected feature of the set of Nash equilibrium allocations of all 
the rules characterized in Barberà et al. (1997). Following our main result, the discussion we of-
fer clarifies that replacement monotonicity, although at the heart of our characterization, does not 
seem to be necessary for the lattice structure to hold for some rules that are efficient and strategy-
proof—see e.g. Example 4.3. Instead, under efficiency and strategy-proofness, a condition which 
lies “between” replacement monotonicity and non-bossiness is probably both necessary and suf-
ficient. We could only establish that if f is efficient and strategy-proof, then non-bossiness is a 
necessary condition for the lattice result to hold. We leave open for future research the identifica-
tion of such a condition which may be key to obtain a generalization of our results. Nevertheless, 
we do offer some extensions of our results provided the preference domain is confined to agents 
having single-peaked preferences over the set of individual outcomes—Example 4.12 makes 
clear that an enlargement of the domain does not seem possible.

Yet an important question is whether there are other models where the lattice structure holds. 
Our study of the single-plateaued domain seem to indicate that such models may be rare. We are 
however aware that the Nash outcomes for the Boston mechanism in the school choice literature 
form a complete lattice (Ergin and Sönmez, 2006). One significant difference from our result 
is that the allocation under truthtelling is not the supremum of the lattice. Ergin and Sönmez 
(2006) show that the set of Nash outcomes is equivalent to one of stable matchings which are 
well-known to form a complete lattice (see for instance Knuth (1976), Adachi (2000) and Hatfield 
and Milgrom (2005)).22 It is not clear if there is any common thread in the two models that lead 
to the lattice result. We leave this question open for future research.

Another open question is whether our main result can be proved using Tarski’s fixed point 
theorem. After all Nash equilibria are fixed points, and Tarski’s fixed point theorem is concerned 
with the lattice structure of fixed points. In this sense, we wonder if our result is an application 
of this celebrated theorem.

Finally, our approach also fits with the recent literature investigating some of the additional 
strategic features of rules in models with single-peaked preferences. For instance, Bochet and 
Sakai (2010) show that the Nash equilibrium allocations of the uniform rule are Pareto dominated 
by the outcome obtained from truthful revelation. Also, Bochet et al. (2019) show that for a large 
family of manipulable rules (e.g., the proportional rule) the set of Nash equilibrium allocations 
is a singleton corresponding to the truthtelling allocation of the uniform rule.

Appendix A

A.1. Auxiliary lemmas

In order to prove our main result, we first need to introduce several auxiliary lemmas which 
will be used as facts or sometimes building blocks of some portion of the main proof. Some of 
these lemmas have appeared elsewhere in the literature while some are new. For all the lemmas, 
we assume that rule f satisfies efficiency, strategy-proofness and replacement monotonicity.

22 Knuth attributes the result on the lattice structure of stable matchings to John Conway.
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Lemma A.1. For each R ∈R and each i ∈ N , if fi(R) < p(Ri), then fi(R) = max
R̂i∈Ri

fi(R̂i ,

R−i ). Similarly, if p(Ri) < fi(R), then fi(R) = min
R̂i∈Ri

fi(R̂i , R−i ).

Proof. We prove the first part only. Fix any R̂i 
= Ri . By strategy-proofness, we have 
fi(R) Ri fi(R̂i , R−i ). Single-peakedness then yields that fi(R̂i , R−i ) /∈ (fi(R), p(Ri)]. If 
p(Ri) < fi(R̂i , R−i ), pick R̄i with p(R̄i) = p(Ri) and f (R̂i, R−i ) P̄i f (R). By peak-onliness, 
f (R̄i, R−i ) = f (R). By construction, f (R̂i, R−i ) P̄i f (R) = f (R̄i, R−i ), a contradiction with 
the strategy-proofness of f . Thus, fi(R̂i , R−i ) ≤ fi(R). �

In the next lemma, we identify how a change in an agent’s report affects one’s own allocation. 
Specifically, if agent i was allocated less than his peak, then any report with a peak above his 
allocation does not alter the allocation. If the original and new reports have peaks respectively on 
the left and right of the original allocation then the new allocation can increase but never exceeds 
the new peak.

Lemma A.2. For each R ∈ R, each i ∈ N , and each R̃i ∈ Ri with p(Ri) < p(R̃i), one of the 
following cases hold:

(i) fi(R) = fi(R̃i , R−i ) ≤ p(Ri) < p(R̃i).
(ii) p(Ri) ≤ fi(R) ≤ fi(R̃i , R−i ) ≤ p(R̃i), p(Ri) < fi(R̃i , R−i ) and fi(R) < p(R̃i).

(iii) p(Ri) < p(R̃i) ≤ fi(R) = fi(R̃i , R−i ).

Proof. The lemma is a direct consequence of Lemma A.1. �
The next lemma covers the situation in which a group changes its report so that each member’s 

new peak moves in the same direction. If no agent’s unilateral change alters the allocation, then 
the group’s report should also not lead to any changes.

Lemma A.3. Pick R, R̄ ∈ R. Let S ⊆ {i ∈ N : fi(R) ≤ p(R̄i)} or S ⊆ {i ∈ N : p(R̄i) ≤ fi(R)}. 
If fi(R̄i , R−i ) = fi(R) for each i ∈ S, then f (R̄S, R−S) = f (R).

Proof. Let S ⊆ {i ∈ N : fi(R) ≤ p(R̄i)}. We prove this lemma by induction on the size of sub-
sets of S.

The induction assumption: Fix any k such that 1 ≤ k ≤ |S| − 1. For all T ⊂ S with |T | = k, we 
have that f (R̄T , R−T ) = f (R).

We know that the induction assumption is true if k = 1. We now show that for all T̄ ⊆ S with 
|T̄ | = k + 1 it must be that f (R̄T̄ , R−T̄ ) = f (R). In contrast, suppose that there exists T̄ with 
|T̄ | = k + 1 such that f (R̄T̄ , R−T̄ ) 
= f (R). We first show that fi(R) < fi(R̄T̄ , R−T̄ ) for each 
i ∈ S. Pick any i ∈ T̄ , and set T = T̄ \ {i}.

Because |T | = k, by the induction assumption, f (R̄T , R−T ) = f (R). If p(R̄i) = fi(R) =
fi(R̄T , R−T ) then it must be that fi(R̄T̄ , R−T̄ ) = fi(R̄T , R−T ) by Lemma A.2. Then by non-
bossiness, f (R̄T̄ , R−T̄ ) = f (R̄T , R−T ) = f (R). This is a contradiction. Hence, fi(R̄T , R−T ) =
fi(R) < p(R̄i). In this case, we would reach a contradiction if fi(R̄T̄ , R−T̄ ) = fi(R̄T , R−T ). 
Subsequently, fi(R) < p(R̄i) and fi(R̄ ¯ , R ¯ ) 
= fi(R̄T , R−T ). By Lemma A.2, we have 
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fi(R̄T̄ , R−T̄ ) = fi(R̄T , R−T ) unless p(Ri) ≤ fi(R̄T , R−T ) < fi(R̄T̄ , R−T̄ ) ≤ p(R̄i). Conse-
quently, we have that p(Ri) ≤ fi(R̄T , R−T ) < fi(R̄T̄ , R̄−T̄ ) ≤ p(R̄i). Because fi(R̄T , R−T ) <
fi(R̄T̄ , R−T̄ ), we have fj (R̄T̄ , R−T̄ ) ≤ fj (R̄T , R−T ) for all j 
= i by replacement monotonicity. 
Because f (R) = f (R̄T , R−T ), we obtain that fi(R) < fi(R̄T̄ , R−T̄ ) and fj (R̄T̄ , R−T̄ ) ≤ fj (R)

for all j 
= i. However, we picked agent i from S arbitrarily, which means that fj (R) <
fj (R̃S, R̄−S) for all j ∈ S. The last two relations are not compatible. �

The next two lemmas are concerned with Nash equilibrium reports. Suppose that one can 
decrease (or increase) her own Nash equilibrium allocation through a unilateral deviation. Then 
one’s peak must have exceeded (respectively fallen short of) the original allocation.

Lemma A.4. Pick R, R̄ ∈ R. If R̄ ∈ NE(R) and fi(R̃i , R̄−i ) < fi(R̄) for some i ∈ N and R̃i ∈
Ri , then fi(R̄) ≤ p(Ri). Similarly, if fi(R̄) < fi(R̃i , R̄−i ), then p(Ri) ≤ fi(R̄).

Proof. Pick R, R̄ ∈ R, i ∈ N and R̃i ∈ Ri . Suppose that fi(R̃i , R̄−i ) < fi(R̄) but p(Ri) <
fi(R̄). We cannot have R̄ ∈ NE(R) if p(Ri) ≤ fi(R̃i , R̄−i ). Thus, let us assume that 
fi(R̃i , R̄−i ) < p(Ri) < fi(R̄). Because f is strategy-proof and R̄ ∈ NE(R), we obtain that 
fi(Ri, R̄i) Ii fi(R̄). In addition, p(Ri) < fi(R̄) implies fi(Ri, R̄−i ) < p(Ri) < fi(R̄). This 
contradicts Lemma A.1. �

The next lemma states that if the peaks of one’s true and new reported preferences are on the 
same side of the Nash equilibrium allocation then the allocation should not change. This is also 
true for groups.

Lemma A.5. Pick R, R̄ ∈ R such that R̄ ∈ NE(R), and pick any R̃ ∈ R. For any S ⊆ {i ∈
N : fi(R̄) ≤ p(R̃i) & fi(R̄) < p(Ri)}, it must be that f (R̃S, R̄S) = f (R̄). Similarly, for any 
T ⊆ {i ∈ N : p(R̃i) ≤ fi(R̄) & p(Ri) < fi(R̄)}, it must be that f (R̃T , R̄T ) = f (R̄).

Proof. Pick R, R̄ ∈ R with R̄ ∈ NE(R), and any R̃ ∈ R. Pick any S ⊆ {i ∈ N : fi(R̄) ≤
pi(R̃)}. Let us now show that f (R̃i, R̄−i ) = f (R̄) for each i ∈ S. If p(R̃i) = fi(R̄), then by 
peak-onliness and non-bossiness, f (R̃i, R̄−i ) = f (R̄). Let fi(R̄) < p(R̃i). By Lemma A.2, 
fi(R̄) ≤ fi(R̃i , R̄−i ) ≤ p(R̃i). If fi(R̄) < fi(R̃i , R̄−i ), then by Lemma A.4, p(Ri) ≤ fi(R̄)

which contradicts that i ∈ S. Hence, fi(R̄) = fi(R̃i , R̄−i ) which along with non-bossiness im-
plies that f (R̄) = f (R̃i, R̄−i ). Given that this is true for all i ∈ S, by Lemma A.3, we have that 
f (R̃S, R̄−S) = f (R̄). By adopting the above arguments slightly, we find that f (R̃T , R̄T ) = f (R̄)

for all T ⊆ {i ∈ N : pi(R̃) ≤ fi(R̄)}. �
Finally, the following lemma shows how a deviating group’s and remaining agents’ allocations 

change. Suppose a group changes its preferences so that each member’s new reported preference 
peak exceeds one’s own original allocation. Then no member gets more than one’s new peak. In 
addition, those who are not in the group must get less than their original allocation.

Lemma A.6. Pick R, R̄ ∈ R. Let S ⊆ {i ∈ N : fi(R) ≤ p(R̄i)} and T ⊆ {i ∈ N : p(R̄i) ≤ fi(R)}. 
Then fi(R̄S, R−S) ≤ p(R̄S) for each i ∈ S and fi(R̄S, R−S) ≤ fi(R) for each i /∈ S. Similarly, 
p(R̄T ) ≤ fi(R̄T , R−T ) for each i ∈ T and fi(R) ≤ fi(R̄T , R−T ) for each i /∈ T .
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Proof. Pick R, R̄ ∈ R. We here provide a proof for f (R̄S, R−S). Pick any i ∈ S. By 
Lemma A.2, pi(Ri) ≤ fi(R) ≤ fi(R̄i , R−i ) ≤ p(R̄i) or fi(R̄i , R−i ) = fi(R). Consequently, 
fi(R) ≤ fi(R̄i , R−i ). Then by replacement monotonicity, fj (R̄i , R−i ) ≤ fj (R) for each j 
= i. 
If j ∈ S \ {i}, fj (R̄i , R−i ) ≤ fj (R) ≤ p(R̄j ). Now sequentially changing the preferences of each 
agent j ∈ S \ {i} from Rj to R̄j , we complete the proof for f (R̄S, R−S). �
A.2. Proofs of the main results

Proof of Proposition 3.2. Pick R ∈ R and x ∈ XNE(R). Let R̄ ∈ R be such that R̄ ∈ NE(R)

and f (R̄) = x. If 
∑

i∈N p(R̄i) = � then we are done because f is peak-only and efficient. So 
suppose that 

∑
i∈N p(R̄i) 
= �. Without loss of generality, let us assume that � <

∑
i∈N p(R̄i). 

By efficiency, fi(R̄) ≤ p(R̄i) for each i ∈ N . In fact, this inequality must be strict for at least 
one agent because 

∑
i∈N fi(R̄) = �. Let S = {i ∈ N : fi(R̄) < p(R̄i)}. We consider two cases: 

(a) For each agent i ∈ N , fi(R̄) ≤ p(Ri) and (b) There exist at least one agent i ∈ N with 
p(Ri) < fi(R̄).

Case (a): Let R̂S ∈ RS be such that p(R̂i) = fi(R̄) for each i ∈ S. By efficiency, p(R̂i) =
fi(R̄) for each i ∈ S and p(R̄j ) = fj (R̄) for each j ∈ N \S. Consequently, f (R̂S, R̄−S) = f (R̄). 
We now show that (R̂S, R̄−S) ∈ NE(R). Suppose otherwise. By combining this with strategy-
proofness, there must exist an agent i∗ with fi∗(Ri∗ , R̂S\{i∗}, R̄N\{S∪{i∗}}) Pi∗ fi∗(R̂S, R̄−S) =
fi∗(R̄). Recall that fi(R̄) ≤ p(Ri) for all i ∈ N . Therefore, by single-peakedness,

fi∗(R̄) < fi∗(Ri∗ , R̂S\{i∗}, R̄N\{S∪{i∗}}) & fi∗(R̄) < p(Ri∗). (A.1)

Consider now (Ri∗ , R̄−i ). Because fi∗(R̄) < p(Ri∗), by Lemma A.2 it must be that 
fi∗(Ri∗ , R̄−i ) ≤ p(Ri∗). The case fi∗(R̄) < fi∗(Ri∗ , R̄−i ) contradicts that R̄ ∈ NE(R). Thus, 
fi∗(R̄) = fi∗(Ri∗ , R̄−i ) which, along with non-bossiness implies that f (R̄) = f (Ri∗ , R̄−i ). 
Consider any j ∈ S \ {i∗}. By construction, p(R̂j ) = fj (R̄) = fj (Ri∗ , R̄−i ). Thus, by strategy-
proofness, fj (R̂j , Ri∗ , R̄−j,i∗) = fj (R̄). Then Lemma A.3 yields that

f (Ri∗ , R̂S\{i∗}, R̄N\{S∪{i∗}}) = f (R̄),

contradicting (A.1). Thus, (R̂S, R̄−S) ∈ NE(R). Finally, the peak-onliness of f implies the claim 
of this step.

Case (b): Pick an agent i∗ with p(Ri∗) < fi∗(R̄). Consider (Ri∗ , R̄−i∗). By Lemma A.2, 
p(Ri∗) ≤ fi∗(Ri∗ , R̄−i∗) ≤ fi∗(R̄) ≤ p(R̄i∗). The case fi∗(Ri∗ , R̄−i∗) < fi∗(R̄) contradicts 
R̄ ∈ NE(R). Hence, p(Ri∗) < fi∗(Ri∗ , R̄−i∗) = fi∗(R̄) which, along with the non-bossiness of 
f , yields that f (Ri∗ , R̄−i∗) = f (R̄). If there exists j 
= i∗ with fj (Ri∗ , R̄−i∗) = fj (R̄) < p(R̄j ), 
then the allocations of agents i∗ and j fall on different sides of their respective peaks at 
(Ri∗ , R̄−i∗), a contradiction with efficiency. Hence, for each j 
= i∗, we have p(R̄j ) = fj (R̄). 
Recall that 

∑
i∈N fi(R̄) = � <

∑
i∈N p(R̄i). This condition is satisfied only if fi∗(R̄) < p(R̄i∗)

which means that S = {i∗}. Consequently, there exists only one agent i∗ with p(Ri∗) < fi∗(R̄)

and S = {i∗}. Let now R̂i∗ ∈ R be such that (R̂i∗, R̄−i∗) = (R̂S, R̄−S) and p(R̂i∗) = fi∗(R̄). We 
are left to show that (R̂S, R̄−S) ∈ NE(R). We already know that i∗ has no unilateral and prof-
itable deviation. By following the same steps used in the proof of Case (a), one can show that no 
other agent has a profitable deviation. Finally, the peak-onliness of f completes the proof. �
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We next divide the proof of Theorem 3.3 into two parts. First we prove that for each R ∈ R, 
(XNE(R), 	R) is a lattice. We label this result below as Theorem A.7. This should cause no 
confusion. The proof of the actual Theorem 3.3 is then devoted to show that (XNE(R), 	R) is 
not only a lattice (as shown in Theorem A.7 below), but in fact it is a complete lattice with the 
truthtelling allocation as supremum.

Theorem A.7. Let rule f satisfy efficiency, strategy-proofness and replacement monotonicity. 
For each R ∈R, (XNE(R), 	R) is a lattice.

Proof. Let R ∈ R. We pick two distinct allocations x̄, x̃ ∈ XNE(R). By Lemma 3.2, there exist 
R̄, R̃ ∈ NE(R) such that f (R̄) = p(R̄) = x̄ and f (R̃) = p(R̃) = x̃. Next, let us partition N into 
three sets W , E and O so that W ≡ {i ∈ N : fi(R̃) < fi(R̄)}, E ≡ {i ∈ N : fi(R̄) < fi(R̃)} and 
O ≡ {i ∈ N : fi(R̃) = fi(R̄)}.

We further decompose W into two subsets W̄ and W̃ so that W̄ = {i ∈ W : f (R̄) Ri f (R̃)}
and W̃ = {i ∈ W : f (R̃) Pi f (R̄)}. Similarly, we decompose E so that Ē = {i ∈ E :
f (R̄) Ri f (R̃)} and Ẽ = {i ∈ E : f (R̃) Pi f (R̄)}.

In addition, let di = |fi(R̃) − fi(R̄)|. We note here that 
∑

i∈W di = ∑
i∈E di . The proof is 

next divided into several steps.

Step 1. Peak relations for partitions of agents.
The set W̃ 
= ∅ if and only if Ẽ 
= ∅. Similarly, the set W̄ 
= ∅ if and only if Ē 
= ∅. In addition,∑

i∈W̄

di =
∑
i∈Ē

di (A.2)

∑
i∈W̃

di =
∑
i∈Ẽ

di (A.3)

W̃ = {i ∈ N : p(Ri) ≤ p(R̃i) < p(R̄i)} (A.4)

Ẽ = {i ∈ N : p(R̄i) < p(R̃i) ≤ p(Ri)} (A.5)

W̄ = {i ∈ N : p(R̃i) < p(R̄i) ≤ p(Ri)} (A.6)

Ē = {i ∈ N : p(Ri) ≤ p(R̄i) < p(R̃i)}. (A.7)

Proof of Step 1. Suppose W̃ 
= ∅. Let us now show that Ẽ 
= ∅. Pick any i ∈ W̃ and consider 
the profile (R̃i, R̄−i ). By construction, fi(R̃) = p(R̃i) < p(R̄i) = fi(R̄) and fi(R̃) Pi fi(R̄). 
Consequently, the single-peakedness of Ri implies that p(Ri) < fi(R̄). By Lemma A.5, 
f (R̃

W̃
, R̄−W̃

) = f (R̄). Consider now (R̃
W̃

, R̄−W̃
) and (R̃W , R̄−W) which differ in the prefer-

ences of those in W̄ . If W̄ = ∅, then f (R̃W , R̄−W) = f (R̄). If W̄ 
= ∅, then by definition of W̄ , 
we have p(R̃i) < fi(R̄) = fi(R̃W̃

, R̄−W̃
). By Lemma A.6, we know that

p(R̃i) ≤ fi(R̃W , R̄−W) for all i ∈ W̄ & fi(R̄) ≤ fi(R̃W , R̄−W) for all i /∈ W̄ .

If O ∪ E = ∅ then fi(R̄) ≤ fi(R̃W , R̄−W) = fi(R̃) for all i ∈ W̃ . But this cannot hap-
pen because W̃ ⊆ W . Thus, O ∪ E 
= ∅. Let S ≡ {i ∈ O ∪ E : p(R̃i) ≤ fi(R̃W , R̄−W)}. If 
O 
= ∅, then O ⊆ S. Consider now (R̃W∪S, R̄−W∪S) and (R̃W , R̄−W). By construction, p(R̄i) ≤
p(R̃i) ≤ fi(R̃W , R̄−W) for each i ∈ S. By Lemma A.2, we know that fi(R̃W∪i , R̄−W∪i ) =
fi(R̃W , R̄−W) for each i ∈ S. By non-bossiness, f (R̃W∪i , R̄−W∪i ) = f (R̃W , R̄−W) for all i ∈ S. 
By Lemma A.3, we obtain that fi(R̃W∪S, R̄−W∪S) = fi(R̃W , R̄−W). Consequently,
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p(R̃i) ≤ fi(R̃W∪S, R̄−W∪S) for all i ∈ W̄ & fi(R̄) ≤ fi(R̃W∪S, R̄−W∪S) for all i /∈ W̄ .

If W ∪ S = N , then fi(R̄) ≤ fi(R̃W∪S, R̄−W∪S) = fi(R̃) for all i ∈ W̃ . However, this cannot 
happen because W̃ ⊆ W . Thus, we find that T ≡ N \ (W ∪ S) = E \ S 
= ∅.

Let us recap what we know below as it will be used later:

Fact 1. At preference profile, (R̃W∪S, R̄−W∪S) it must be that

p(R̄i) = fi(R̃W̃
, R̄−W̃

) ≤ fi(R̃W , R̄−W) = fi(R̃W∪S, R̄−W∪S) < p(R̃i)

for all i ∈ T (A.8)

p(R̄i) = fi(R̃W̃
, R̄−W̃

) ≤ p(R̃i) ≤ fi(R̃W , R̄−W) = fi(R̃W∪S, R̄−W∪S)

for all i ∈ S (A.9)

p(R̃i) < p(R̄i) = fi(R̃W̃
, R̄−W̃

) ≤ fi(R̃W , R̄−W) = fi(R̃W∪S, R̄−W∪S)

for all i ∈ W̃ (A.10)

p(R̃i) < p(R̄i) = fi(R̃W̃
, R̄−W̃

) ≤ fi(R̃W , R̄−W) = fi(R̃W∪S, R̄−W∪S)

for all i ∈ W̄ (A.11)

Pick an agent i ∈ T . Consider now (R̃W∪S, R̄−W∪S) and (R̃−i , R̄i) which differs in the prefer-
ences of those agents in T \{i}. At both profiles, there is underdemand. Hence, (A.8), Lemma A.6
and efficiency yield that

fi(R̃−i , R̄i) ∈ [p(R̄i), fi(R̃W∪S, R̄−W∪S)] ⊆ [p(R̄i),p(R̃i)]
fj (R̃−i , R̄i) = p(R̃j ) for all j ∈ T \ {i}
fj (R̃−i , R̄i) = [p(R̃j ), fj (R̃W∪S, R̄−W∪S)] for all j ∈ W ∪ S

We know fi(R̃) = p(R̃i). Because R̃ ∈ NE(R), fi(R̃) Ri fi(R̃i , R̄−i ). Clearly, we cannot have 
that p(Ri) ≤ fi(R̃i , R̄i) < fi(R̃) by strategy-proofness. We also cannot have fi(R̃i , R̄−i ) <
p(Ri) < fi(R̃) by Lemma A.4. Consequently,

fi(R̄) ≤ fi(R̃i , R̄−i ) < fi(R̃) ≤ p(Ri) & f (R̃) Pi f (R̃i , R̄−i ) Pi f (R̄). (A.12)

Thus, i ∈ Ẽ and given that agent i is chosen arbitrarily from T , we find that T ⊆ Ẽ 
= ∅.

Let us now go back and consider (R̃W∪S, R̄−W∪S) and R̃ which differ in the preferences of 
those in T . Between these profiles, the allocations of only those in T increase. Furthermore, 
the allocation of each agent i ∈ T increases by at most di (see (A.8)). On the other hand, the 
allocation of those in W̃ must decrease by at least 

∑
i∈W̃

di (see (A.11)). Thus, we find that ∑
i∈W̃

di ≤ ∑
i∈T di . Given that T ⊆ Ẽ, we have 

∑
i∈W̃

di ≤ ∑
i∈Ẽ

di . The same logic used to 
find the above inequality also yields that 

∑
i∈Ẽ

di ≤ ∑
i∈W̃

di . Consequently,∑
i∈Ẽ

di =
∑
i∈T

di =
∑
i∈W̃

di .

Thus, we obtain (A.3). Because T ⊆ Ẽ ⊆ E, the above equation implies that T = Ẽ. Then be-
cause (A.12) must be satisfied for all i ∈ T = Ẽ we obtain (A.5). The rest of the step can be 
proved similarly.
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Step 2. Allocations for various configurations of profiles R̃ and R̄.
We must have that

fi(R̃−Ẽ
, R̄

Ẽ
) = fi(R̃W̄ , R̄−W̄ ) = pi(R̄i) = fi(R̃Ē, R̄−Ē) = fi(R̃−W̃

, R̄
W̃

)

for all i ∈ W̃ ∪ Ẽ

fi(R̃−Ẽ
, R̄

Ẽ
) = fi(R̃W̄ , R̄−W̄ ) = pi(R̃i) = fi(R̃Ē, R̄−Ē) = fi(R̃−W̃

, R̄
W̃

)

for all i ∈ W̄ ∪ Ē

fi(R̃−Ẽ
, R̄

Ẽ
) = fi(R̃W̄ , R̄−W̄ ) = pi(R̃i) = fi(R̃Ē, R̄−Ē) = fi(R̃−W̃

, R̄
W̃

)

for all i ∈ O

Proof of Step 2. Recall Fact 1 in Step 1 and that Ẽ = T . Thus, between profiles (R̃−Ẽ
, R̄

Ẽ
) and 

R̃, the allocations of only those in Ẽ increase collectively by 
∑

i∈Ẽ
(p(R̃i) − fi(R̃−Ẽ

, R̄
Ẽ
)) ≤∑

i∈Ẽ
di . At the same time, the allocations of those in W̃ must decrease collectively by ∑

i∈W̃
(fi(R̃−Ẽ

, R̄
Ẽ
) − p(R̃i)) ≥ ∑

i∈W̃
di in order to have fi(R̃) = p(R̃i) for each agent i. 

Because 
∑

i∈Ẽ
di = ∑

i∈W̃
di , we find that

fi(R̃−Ẽ
, R̄

Ẽ
) = pi(R̄i) for all i ∈ W̃ & fi(R̃−Ẽ

, R̄
Ẽ
) = pi(R̄i) for all i ∈ Ẽ.

In addition, because the increase in the allocations of those in Ẽ cancels the decrease in the 
allocations of those in W̃ , we must have that

fi(R̃−Ẽ
, R̄

Ẽ
) = pi(R̃i) for all i ∈ W̄ ∪ O ∪ Ē.

Recall from Step 1, that f (R̃W , R̄−W) = f (R̃−Ẽ
, R̄

Ẽ
). Consider now (R̃W̄ , R̄−W̄ ). By definition, 

p(R̃i) < p(R̄i) for each i ∈ W . Hence, by Lemma A.6 we know that fi(R̃W̄ , R̄−W̄ ) ≥ fi(R̄) =
p(R̄i) > p(R̃i) for each i ∈ W̃ . Then by Lemma A.2 and non-bossiness, for each i ∈ W̃ ,

fi(R̃W̄∪i , R̄−(W̄∪i)) = fi(R̃W̄ , R̄−W̄ ).

Then by Lemma A.3, we have that

f (R̃W , R̄−W) = f (R̃W̄ , R̄−W̄ ).

Given that f (R̃W , R̄−W) = f (R̃−Ẽ
, R̄

Ẽ
)) we complete the proof for the first two equalities in 

the equation given in Step 2. The last two equalities are proved similarly.

Step 3. The set of Nash equilibrium allocations is a partially ordered set.
For all R ∈R, (XNE(R), 	R) is a partially ordered set.

Proof of Step 3. One needs to show that 	R is antisymmetric on XNE(R). Because x̃ 
= x̄

are chosen arbitrarily, we only need to show that there exists at least one agent who is not 
indifferent between x̃ = f (R̃) and x̄ = f (R̄). This immediately follows from Step 1 and the 
single-peakedness of preferences.

We are now ready to prove that the set of Nash equilibrium allocations is a lattice. To prove 
this, we only need to show that x̄ ∧ x̃ = f (R̄) ∧ f (R̃) ∈ XNE(R) and x̄ ∨ x̃ = f (R̄) ∨ f (R̃) ∈
XNE(R). This is obvious if f (R̄) and f (R̃) are Pareto comparable. Thus, we complete the proof 
once we prove the following statement.
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Step 4. Concluding: meets and joins of non-comparable Nash equilibrium allocations.
If f (R̄) and f (R̃) are not Pareto comparable, then f (R̃

W̃∪Ẽ
, R̄W̄∪Ē, R̄O) = f (R̄) ∨ f (R̃)

and f (R̃W̄∪Ē, R̄
W̃∪Ẽ

, R̄O) = f (R̄) ∧ f (R̃). In addition, (R̃
W̃∪Ẽ

, R̄W̄∪Ē, R̄O) ∈ NE(R) and 
(R̃W̄∪Ē, R̄

W̃∪Ẽ
, R̄O) ∈ NE(R).

Proof of Step 4. Let R̂ ∈ R be such that R̂ = (R̃
W̃∪Ẽ

, R̄Ē∪W̄ , R̄O). By Step 1,∑
i∈W̃∪Ẽ

p(R̃i) =
∑

i∈W̃∪Ẽ

fi(R̃) =
∑

i∈W̃∪Ẽ

fi(R̄) =
∑

i∈W̃∪Ẽ

p(R̄i)

and ∑
i∈W̄∪Ē

p(R̃i) =
∑

i∈W̄∪Ē

fi(R̃) =
∑

i∈W̄∪Ē

fi(R̄) =
∑

i∈W̄∪Ē

p(R̄i).

We also know that for all i ∈ O , p(R̃i) = fi(R̃) = fi(R̄) = p(R̄i) and 
∑

i∈N p(R̃i) =∑
i∈N p(R̄i) = �. Subsequently, 

∑
i∈N p(R̂i) = �.

By efficiency, we have fi(R̂) = p(R̂i) for all i ∈ N . In addition,

fi(R̂) =

⎧⎪⎨
⎪⎩

fi(R̃) if i ∈ Ẽ ∪ W̃

fi(R̄) if i ∈ Ē ∪ W̄

fi(R̃) = fi(R̄) if i ∈ O.

We are left to show that R̂ ∈ NE(R). Suppose that R̂ /∈ NE(R). Then by strategy-proofness, 
there must exist i ∈ N such that fi(Ri, R̂−i ) Pi fi(R̂). Of course, it must be that p(Ri) 
= fi(R̂). 
Without loss of generality, let us assume that fi(R̂) < p(Ri). We know also that p(Rj ) ≤
p(R̃j ) = fj (R̂) for each j ∈ W̃ and p(Rj ) ≤ p(R̄j ) = fj (R̂) for each j ∈ Ē by step 1. Hence, 
if fi(R̂) < p(Ri), then i ∈ Ẽ ∪ W̄ ∪ O . Suppose that i ∈ Ẽ ∪ O and let V = Ẽ ∪ {i}. Because 
p(R̄j ) < p(R̃j ) ≤ p(Rj ) for each j ∈ Ẽ and p(R̃j ) = p(R̄j ) for each j ∈ O , we must have that 
p(R̄i) = fi(R̄) < p(Ri).

Because fi(R̂) < p(Ri) (by assumption) and fi(Ri, R̂−i ) Pi fi(R̂), we must have that 
p(R̃i) = fi(R̂) < fi(Ri, R̂−i ). By replacement monotonicity, for each j 
= i we have

fj (Ri, R̂−i ) ≤ fj (R̂).

We now claim that the above inequality can be strict only for agents in V \ {i}. Because 
fi(R̄) < p(Ri), fj (R̄) < p(R̃j ) for each j ∈ T \ {i} and R̄ ∈ NE(R), we must have that 
f (Ri, R̃T \{i}, R̄T ) = f (R̄) by Lemma A.5. Consider now (Ri, R̃T \{i}, R̄−T ) and (Ri, R̂−i ) which 
differ in the preferences of W̃ . We know that p(Rj ) ≤ p(R̄j ) = fj (R̄) = fj (Ri, R̃T \{i}, R̄T ) for 
each j ∈ W̃ . By Lemma A.6, it must be that,

p(R̃j ) ≤ fj (Ri, R̂−i ) for all i ∈ W̃ &

p(R̄j ) = fj (Ri, R̃T \i , R̄−T ) ≤ fj (Ri, R̂−i ) for all j /∈ W̃ .

Because (Ri, R̂−i ) is a report for which there is overdemand,

fi(Ri, R̂−i ) ≤ p(Ri)

fj (Ri, R̂−i ) ≤ p(R̃i) for all j ∈ W̃ ∪ Ẽ \ i

fj (Ri, R̂−i ) ≤ p(R̄j ) for all j ∈ O ∪ W̄ ∪ Ē \ {i}.
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By combining the above equations, we find that

fi(Ri, R̂−i ) ∈ [p(R̄i),p(Ri)]
fj (Ri, R̂−i ) ∈ [p(R̄i),p(R̃j )] for all j ∈ W̃ ∪ Ẽ \ i

fj (Ri, R̂−i ) = p(R̃i) for all j ∈ W̃

fj (Ri, R̂−i ) = p(R̄j ) for all j ∈ O ∪ W̄ ∪ Ē \ {i},
and ∑

j∈T

fj (Ri, R̂−i ) =
∑
j∈T

p(R̄i).

The last equality comes from feasibility. However, we already know that fi(R̂) = p(R̃i) <
fi(Ri, R̂−i ) and fj (Ri, R̂−i ) ≤ fj (R̂) = p(R̃j ) for all j ∈ Ẽ \{i}. By combining this with the re-
sults above, we prove the claim. Observe here that there must exist at least one agent i∗ ∈ Ẽ \ {i}
for whom fi∗(Ri, R̂−i ) < fi∗(R̃) = p(R̃i∗).

Consider now (Ri, R̂−i ) and (Ri, R̄W̄ , R̃−(W̄∪i)) which differ in the preferences of those 

agents in Ē. For each j ∈ Ē, fj (Ri, R̂−i ) = p(R̄j ) < p(R̃j ). From Lemma A.6, fj (Ri, R̂−i ) ≤
fj (R̄W̄ , R̃−W̄ ) ≤ p(R̃j ) for all j ∈ Ē, and fj (R̄W̄ , R̃−W̄ ) ≤ fj (Ri, R̂−i ) for all j /∈ Ē. From Step 
2, f (R̄W̄ , R̃−W̄ ) = f (R̃). The cases in which fi(Ri, R̄W̄ , R̃−W̄∪i ) < fi(R̄W̄ , R̃−W̄ ) = p(R̃i) <
p(Ri) are incompatible with strategy-proofness.

Suppose that fi(Ri, R̄W̄ , R̃−W̄∪i ) = fi(R̄W̄ , R̃−W̄ ) = p(R̃i). Then by non-bossiness we 
have that f (Ri, R̄W̄ , R̃−W̄∪i ) = f (R̄W̄ , R̃−W̄ ). This means that fi∗(Ri, R̂−i ) < p(R̃i∗) =
fi∗(Ri, R̄W̄ , R̃−W̄∪i ) = f (R̄W̄ , R̃−W̄ ) which cannot occur as pointed out earlier. Finally sup-
pose that fi(R̄W̄ , R̃−W̄ ) < fi(Ri, R̄W̄ , R̃−W̄∪i ). In this case, consider (Ri, R̄W̄ , R̃−W̄∪i ) and 
(Ri, R̃−i ) which differ in the preferences of those agents in W̄ . Because p(R̃j ) < p(R̄j )

for each j ∈ W̄ and i /∈ W̄ , by Lemma A.2 and replacement monotonicity, we have that 
fi(R̃) = p(R̃i) < fi(Ri, R̄W̄ , R̃−W̄∪i ) ≤ fi(Ri, R̃−i ). Then by Lemma A.4, we must have 
p(Ri) ≤ fi(R̃) which contradicts fi(R̃) = fi(R̃) < p(Ri).

We will reach a similar contradiction if i ∈ Ē. This completes the proof that (R̃
W̃∪Ẽ

, R̄W̄∪Ē,

R̄O) ∈ NE(R).
Let now R̂ ∈ R be such that R̂ = (R̄

W̃∪Ẽ
, R̃W̄∪Ē, R̄O). Similarly to the previous case, we 

have that fi(R̂) = p(R̂i) for all i ∈ N and

fi(R̂) =

⎧⎪⎨
⎪⎩

fi(R̄) if i ∈ Ẽ ∪ W̃

fi(R̃) if i ∈ Ē ∪ W̄

fi(R̃) = fi(R̄) if i ∈ O.

We are left to show that R̂ ∈ NE(R). Suppose that R̂ /∈ NE(R). Then by strategy-proofness, 
there must exist i ∈ N such that fi(Ri, R̂−i ) Pi fi(R̂). Of course, it must be that p(Ri) 
= fi(R̂). 
Without loss of generality, let us assume that fi(R̂) < p(Ri). We know also that p(Rj ) ≤
p(R̃j ) < p(R̄i) = fj (R̂) for each j ∈ W̃ and p(Rj ) ≤ p(R̄j ) < p(R̃j ) = fj (R̂) for each j ∈ Ē. 
Hence, if fi(R̂) < p(Ri), then i ∈ Ẽ ∪ W̄ ∪ O . Suppose that i ∈ Ẽ ∪ O and let V = Ẽ ∪ {i}. 
Because p(R̄j ) < p(R̃j ) ≤ p(Rj ) for each j ∈ Ẽ and p(R̃j ) = p(R̄j ) for each j ∈ O , we must 
have that fi(R̃) < p(Ri).
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Consider now (Ri, R̃−i ). By Lemma A.2, we must have that p(R̃i) = fi(R̃) ≤ fi(Ri, R̃−i ) ≤
p(Ri). If fi(R̃) < fi(Ri, R̃−i ), then fi(Ri, R̄−i ) Pi fi(R̄), contradicting that R̃ ∈ NE(R). 
Thus, fi(R̃) = fi(Ri, R̃−i ) which along with non-bossiness gives that f (R̃) = f (Ri, R̃−i ). 
Consider now (Ri, R̃−i ) and (Ri, R̄W̃

, R̃−(W̃∪i)
) which differ in the preferences of those 

in W̃ . By definition of W̃ , p(R̃j ) = fj (R̃) = fj (Ri, R̄W̃
, R̃−(W̃∪i)

) < p(R̄i) for each j ∈
W̃ . By Lemma A.6, we find that fi(Ri, R̄W̃

, R̃−(W̃∪i)
) ≤ fi(Ri, R̃−i ) = p(R̃i) < p(Ri). 

By Lemma A.2, we obtain that fi(Ri, R̄W̃
, R̃−(W̃∪i)

) = fi(R̄W̃
, R̃−W̃

). By non-bossiness, 

f (Ri, R̄W̃
, R̃−(W̃∪i)

) = f (R̄
W̃

, R̃−W̃
). We know from Step 2, f (R̄

W̃
, R̃−W̃

) = f (R̂). Finally, 

consider (Ri, R̄W̃
, R̃−(W̃∪i)

) and (Ri, R̂−i ) which differ in the preferences of those in V \ {i}. 
For each j ∈ T \ {i}, we have that p(R̄j ) = fj (Ri, R̄W̃

, R̃−(W̃∪i)
) = fj (R̄W̃

, R̃−W̃
). Then 

by Lemma A.2 and non-bossiness, f (Ri, R̄j , R̄W̃
, R̃−(W̃∪i∪j)

) = f (Ri, R̄W̃
, R̃−(W̃∪i)

) for all 

j ∈ T \ {i}. By Lemma A.3, we have that f (Ri, R̂−i ) = f (Ri, R̄W̃
, R̃−(W̃∪i)

) = f (R̂), a contra-

diction. Thus, R̂ = (R̄
W̃∪Ẽ

, R̃W̄∪Ē, R̄O) ∈ NE(R). �
We now prove our main Theorem establishing that for each R ∈ R, (XNE(R), 	R) is a com-

plete lattice. Since we just showed that (XNE(R), 	R) is a lattice, we only need to establish the 
completeness of the lattice and the fact that its supremum is well-identified as the allocation 
under truthtelling.

Proof of Theorem 3.3. We prove this theorem in three steps.

Step 1: For each R ∈R, the supremum of (XNE(R), 	R) is xsup = f (R).

Proof of Step 1: Let R ∈ R. Contrary to the statement assume that for some i ∈ N and x ∈
XNE(R), x Pi fi(R). By Proposition 3.2, there exists R̄ ∈ NE(R) such that 

∑
i∈N p(R̄i) = �

and f (R̄) = x. By efficiency, p(R̄i) = fi(R̄) for all i ∈ N . If 
∑

i∈N p(Ri) = �, then again by 
efficiency, fi(R) = p(Ri) for each i ∈ N . Thus, fi(R) Ri fi(R̄) for each i ∈ N , which is a 
contradiction. Without loss of generality assume that 

∑
i∈N p(Ri) < �.

Let T ≡ {i ∈ N : p(Ri) ≤ fi(R̄)}. It must be that T 
= ∅ because 
∑

p(Ri) < � = ∑
fi(R̄)

and p(R̄i) = fi(R̄) for all i. In addition, 
∑

i∈T p(Ri) + ∑
i∈N\T p(R̄i) < �. In fact, for each S

with T ⊆ S, we have that 
∑

i∈S p(Ri) + ∑
i∈N\S p(R̄i) < �. Fix any i ∈ T . If p(Ri) = fi(R̄), 

then fi(Ri, R̄−i ) = fi(R̄). If p(Ri) < fi(R̄), then by Lemma A.2 we obtain that fi(Ri, R̄−i ) =
fi(R̄). Consequently, Lemma A.3 yields f (RT , R̄−T ) = f (R̄). If T = N , we are done and 
f (R̄) = f (R). Suppose that T 
= N . Consider now (RT , R̄−T ) and R. We know that for each 
i ∈ N \ T , fi(RT , R̄−T ) = fi(R̄) < p(Ri). Hence, by Lemma A.6, we know that

fi(R) ≤ p(Ri) for all i ∈ N \ T & fi(R) ≤ fi(RT , R̄−T ) for all i ∈ T .

By efficiency, it is the case that p(Ri) ≤ fi(R) for all i ∈ N . By combining this with the above 
two conditions we find that

fi(R) = p(Ri) for all i ∈ N \ T

fi(R) ∈ [p(Ri), f (RT , R̄−T )] = [p(Ri), f (R̄)] for all i ∈ T .

Consequently, f (R̄) 
= f (R), fi(R) Pi fi(R̄) for each i ∈ N \ T and fi(R) Ri fi(R̄) for all 
i ∈ T . Thus, f (R) �R f (R̄) = x.
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Before we can conclude the proof that (XNE, 	R) is a complete lattice, we need to show that 
the set of Nash equilibrium allocations is a closed set.

Step 2. For each R ∈R, XNE(R) is a closed set.

Proof of Step 2. Let R ∈R and pick any convergent sequence {xt} → x̃ where xt ∈ XNE(R). We 
need to show that x̃ ∈ XNE(R). Let {Rt } be a sequence of preference profiles with p(Rt

i ) = xt
i . 

By Proposition 3.2, we know that Rt ∈ NE(R) for each t ∈ N . Let R̃ ∈ R be a preference pro-
file with p(R̃i) = x̃i for all i ∈ N . We now show that R̃ ∈ NE(R). Suppose otherwise. Then by 
strategy-proofness, there exists i ∈ N such that fi(Ri, R̃−i ) Pi fi(R̃). Without loss of generality, 
assume that fi(R̃) = p(R̃i) < fi(Ri, R̃−i ). By Lemma A.2, p(R̃i) = fi(R̃) < fi(Ri, R̃−i ) <
p(Ri). Because f (Rt ) →t→∞ f (R̃), there exists t̄ such that fi(R

t ) < p(Ri) for all t ≥ t̄ . 
For any t ≥ t̄ , consider fi(Ri, Rt−i ). By Lemma A.2, p(Rt

i ) = fi(R
n) ≤ fi(Ri, Rt−i ) ≤ p(Ri). 

Because Rt ∈ NE(R) and p(Rt
i ) < p(Ri), we must have fi(R

n) = fi(Ri, Rt−i ). As a result, 
fi(Ri, Rt−i ) < fi(Ri, R̃−i ). In addition, by non-bossiness, f (Rt ) = f (Ri, Rt−i ). Consequently,

lim
t→∞f (Ri,R

t−i ) = lim
t→∞f (Rt ) = f (R̃). (A.13)

Let εt ≡ maxj 
=i |p(R̃j ) −p(Rt
j )|. Let us now reach (Ri, R̃−i ) from (Ri, Rt−i ) by sequentially 

changing the agents’ preferences. At any step of this process, by Lemma A.2, the allocation of the 
agent whose preference is modified changes at most by εt . Hence, by replacement monotonicity, 
i’s allocation changes at most by εt at any step or by (n − 1)εt as a result of this whole process. 
However, εt →t→∞ 0. Hence,

lim
t→∞fi(Ri,R

t−i ) = fi(Ri, R̃−i ) > p(R̃i) = fi(R̃).

This contradicts (A.13).
We are now ready to conclude.

Step 3. For each R ∈R, (XNE(R), 	R) is a complete lattice.

Proof of Step 3. Pick any Y ⊆ XNE(R). We need to show that both the meet and join of Y
exists on XNE(R). We only show this for the meet. Denote the closure of Y by cl(Y ). By Step 
2, cl(Y ) ⊆ XNE(R). In addition, because X is bounded so is XNE(R). Consequently, cl(Y ) is 
compact. Because Ri is continuous for each i ∈ N , there must exist yi ∈ cl(Y ) such that x Ri yi

for any x ∈ cl(Y ). Since N is finite, 
∧

i y
i ∈ XNE(R). Clearly, 

∧
i y

i = ∧
cl(Y ). We are now 

left to show that 
∧

i y
i is the meet of Y on XNE(R). This is obvious if yi ∈ Y for all i ∈ N . 

Suppose this is not the case. Because Y ⊂ cl(Y ), 
∧

i y
i is a lower bound of Y on XNE(R). Thus, 

if 
∧

i y
i is not the meet of Y then there exists another lower bound of Y in XNE(R), say y, that 

Pareto dominates 
∧

i y
i . Fix an agent j for whom y Pj

∧
i y

i Ij yj . By construction, if yj ∈ Y , 
then y Pj yj . Thus, y is not a lower bound. As a result, yj /∈ Y . However, because yj ∈ cl(Y )

there exists an allocation x ∈ Y which is arbitrarily close yj . By continuity of Rj , y Pj x. This 
contradicts that y is a lower bound of Y on XNE(R). Hence, 

∧
i y

i = ∧
Y �

We now prove that when the initial guaranteed levels are invariant to regime changes, the 
infimum of the lattice is the equal division allocation.
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Proof of Proposition 3.4. Let R, R̄ ∈ R be such that p(R̄i) = x∗
i for each i ∈ N . We first show 

that R̄ ∈ NE(R). Clearly, f (R̄) = x∗. Under any sequential allotment rule, every agent i ∈ N

who reports R̄i will get allocated exactly x∗
i regardless of the others’ reports. Thus, if some agent 

i∗ reports some other R̃i∗ then fi∗(R̃i∗ , R̄−i∗) = x∗
i . Thus, R̄ ∈ NE(R).

Consider any R̃ ∈ NE(R). We now show that as long as f (R̃) 
= f (R̄), f (R̃) Pareto domi-
nates f (R̄). We already mentioned that any agent i ∈ N can obtain the initial guaranteed level x∗

i

regardless of the others’ reports. Hence, for each i ∈ N , fi(R̃) Ri fi(R̄). Because f (R̃) 
= f (R̄), 
there must exist an agent j for whom p(R̃j ) < x∗

j = p(R̄j ). Because fj (R̄j , R̃−j ) = x∗
j < fj (R̃)

and R̃ ∈ NE(R), by Lemma A.4, we have that p(Rj ) ≤ fj (R̃). Consequently, fj (R̃) Pj fj (R̄). 
By combining this with fi(R̃) Ri fi(R̄i , R̃−i ) = fi(R̄) for each i ∈ N , we obtain that f (R̃) �R

f (R̄). Hence x∗ = xinf . �
We now prove that for the class of weighted uniform rules, for each R ∈ R the set 

(XNE(R, 	R) is totally ordered.

Proof of Proposition 3.6. Let f be the weighted uniform rule with respect to weights wH and 
wL. Consider R ∈ R. In contrast to the theorem, suppose that there exist two Pareto incomparable 
allocations x̄, x̃ ∈ XNE(R). Let R̄, R̃ ∈ R be such that for each i ∈ N , p(R̄i) = x̄i and p(R̃i) = x̃i . 
By Proposition 3.2, R̄, R̃ ∈ NE(R). As in the proof of Theorem A.7, define W̃ , W̄ , Ē, Ẽ and 
O . For x̃ and x̄ be Pareto incomparable, the first four sets must be nonempty by Step 1 in the 
proof of Theorem A.7. Because x̃ 
= x̄, at least one of the following two cases must be satisfied: 

minj∈N

{
fj (R̄)

wL
j

}

= maxj∈N

{
fj (R̄)

wL
j

}
and minj∈N

{
fj (R̃)

wL
j

}

= maxj∈N

{
fj (R̃)

wL
j

}
. Assume without 

loss of generality that the former is satisfied. Fix i∗ ∈ W̃ . By Step 1 of the proof of Theorem A.7, 

we have that p(Ri∗) < p(R̄i∗) < fi∗(R̄). We claim that it cannot be minj∈N

{
fj (R̄)

wL
j

}
<

fi∗ (R̄)

wL
i∗

. 

Otherwise, because f is a weighted uniform rule, i∗ can decrease its allocation slightly by report-
ing a preference with a slightly smaller peak. Thus, the single-peakedness of Ri∗ and R̄ ∈ NE(R)

give that fi∗(R̄) ≤ p(Ri∗), a contradiction. Thus, we have that

fi∗(R̄)

wL
i∗

= min
j∈N

{
fj (R̄)

wL
j

}
. (A.14)

Fix j∗ ∈ Ē. If minj∈N

{
fj (R̃)

wL
j

}

= maxj∈N

{
fj (R̃)

wL
j

}
, then the same logic as above gives that

fj∗(R̃)

wL
j∗

= min
j∈N

{
fj (R̃)

wL
j

}
. (A.15)

Of course, the relation above is true if minj∈N

{
fj (R̃)

wL
j

}
= maxj∈N

{
fj (R̃)

wL
j

}
.

By (A.14) and (A.15), we have that fi∗ (R̄)

wL
i∗

≤ fj∗ (R̄)

wL
j∗

and 
fj∗ (R̃)

wL
j∗

≤ fi∗ (R̃)

wL
i∗

. At the same time, 

by the definition of W̃ and Ē, we have that fi∗(R̃) < fi∗(R̄) and fj∗(R̄) < fj∗(R̃). These two 
inequalities are not compatible with the preceding two inequalities. Thus, either W̃ = ∅ or Ē = ∅. 
This is the contradiction we are looking for. �
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Proof of Proposition 4.4. Suppose by contradiction that f violates non-bossiness. Then there 
exist i ∈ N , R ∈ R and R̄i ∈ Ri such that fi(R) = fi(R̄i , R−i ) and f (R) 
= f (R̄i, R−i ). By ef-
ficiency, either (i) there exists k 
= i such that fk(R̄i , R−i ) Pk fk(R) or (ii) fj (R̄i , R−i ) Ij fj (R)

for all j 
= i. Strategy-proofness and the fact that fi(R) = fi(R̄i , R−i ) together imply that R̄i

is i’s best response to (R̄i , R−i ). By strategy-proofness, for each j 
= i the true report Rj is 
a best response to (R̄i, R−i ). Hence, (R̄i , R−i ) ∈ NE(R). Because f (R) is the supremum of 
the complete lattice (XNE(R), 	R), we have fj (R) Rj fj (R̄i , R−i ) for all j 
= i. Hence, we 
can dispose of case (i) immediately. In addition, in case (ii), we have two suprema which is a 
contradiction. �

Here we simply show that efficiency can be replaced by same-sidedness for the complete 
lattice result, i.e., we show that it is equivalent to efficiency in the Sprumont model.

Proof of Corollary 4.5. We only need to show that same-sidedness implies efficiency. Suppose 
otherwise. Consequently, there exist R ∈ R and x ∈ X such that x �R f (R). Clearly, x 
= f (R). 
If 

∑
i∈N p(Ri) = � then same-sidedness would require that f (R) = p(R). Hence, f (R) 	R x, 

a contradiction. Thus, 
∑

i∈N p(Ri) 
= �. Without loss of generality, assume 
∑

i∈N p(Ri) < �. 
By same-sidedness, p(Ri) ≤ fi(R) for all i ∈ N . Because x 
= f (x), there exists j ∈ N with 
fj (R) < xj . By single-peakedness, fj (R) Pj x, a contradiction. �
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